GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
 NLIBSVM
 CAdaBoost
 CAdaBoostClassModel
 CANBC
 CANBC_Model
 CAngleMagnitude
 CBAG
 CBernoulliRBM
 CCholesky
 CCircularBuffer
 CClassificationData
 CClassificationDataStream
 CClassificationResult
 CClassificationSampleThis class stores the class label and raw data for a single labelled classification sample
 CClassifierThis is the main base class that all GRT Classification algorithms should inherit from
 CClassLabelAndTimer
 CClassLabelChangeFilter
 CClassLabelFilter
 CClassLabelTimeoutFilter
 CClassTracker
 CClusterer
 CClusterInfo
 CClusterLevel
 CClusterTree
 CClusterTreeNode
 CCommandLineParser
 CContext
 CContinuousHiddenMarkovModel
 CDeadZoneSets any values in the input signal that fall within the dead-zone region to zero. Any values outside of the dead-zone region will be offset by the dead zone's lower limit and upper limit
 CDebugLog
 CDebugLogMessage
 CDecisionStump
 CDecisionTree
 CDecisionTreeClusterNode
 CDecisionTreeNode
 CDecisionTreeThresholdNode
 CDecisionTreeTripleFeatureNodeThis class implements a DecisionTreeTripleFeatureNode, which is a specific type of node used for a DecisionTree
 CDerivativeComputes either the first or second order derivative of the input signal
 CDictThis class implements a flexible dictionary that supports multiple data types. Elements in the dictionary consist of key-value pairs, where keys are std::strings and values can be any data type, as they are stored as a GRT::DynamicType
 CDiscreteHiddenMarkovModel
 CDoubleMovingAverageFilterThe class implements a Float moving average filter
 CDTW
 CDTWTemplate
 CDynamicType
 CEigenvalueDecomposition
 CEnvelopeExtractor
 CErrorLog
 CErrorLogMessage
 CEvolutionaryAlgorithmThis class implements a template based EvolutionaryAlgorithm
 CException
 CFastFourierTransform
 CFeatureExtraction
 CFFT
 CFFTFeatures
 CFileParser
 CFiniteStateMachine
 CFIRFilterThis class implements a Finite Impulse Response (FIR) Filter. It can support a low pass filter, high pass filter, or band pass filter
 CFSMParticle
 CFSMParticleFilter
 CGate
 CGaussianMixtureModels
 CGaussNeuron
 CGestureRecognitionPipeline
 CGMM
 CGridSearch
 CGridSearchParam
 CGridSearchRangeThis class implements a basic grid search algorithm
 Cgrt_numeric_limits
 CGRTBase
 CGuassModel
 CHierarchicalClustering
 CHighPassFilterThis class implements a High Pass Filter
 CHMMThis class acts as the main interface for using a Hidden Markov Model
 CHMMTrainingObject
 CIndexDist
 CIndexedDouble
 CIndividual
 CInfoLog
 CInfoLogMessage
 CKMeans
 CKMeansFeatures
 CKMeansQuantizer
 CKNN
 CLeakyIntegratorComputes the following signal: y = y*z + x, where x is the input, y is the output and z is the leakrate
 CLinearLeastSquares
 CLinearRegression
 CLogBase class for all GRT logging functionality
 CLogisticRegression
 CLowPassFilterThe class implements a low pass filter, this is based on an Exponential moving average filter: https://en.wikipedia.org/wiki/Exponential_smoothing
 CLUDecomposition
 CMatrix
 CMatrixFloat
 CMeanShift
 CMedianFilterThe MedianFilter implements a simple median filter: https://en.wikipedia.org/wiki/Median_filter
 CMetrics
 CMinDist
 CMinDistModel
 CMinMax
 CMixtureModel
 CMLBaseThis is the main base class that all GRT machine learning algorithms should inherit from
 CMLP
 CMovementDetector
 CMovementIndex
 CMovementTrajectoryFeatures
 CMovingAverageFilterThe MovingAverageFilter implements a low pass moving average filter
 CMultidimensionalRegression
 CNeuron
 CNode
 CObserver
 CObserverManager
 CParticle
 CParticleClassifier
 CParticleClassifierGestureTemplate
 CParticleClassifierParticleFilter
 CParticleFilter
 CParticleSwarmOptimization
 CPeakDetection
 CPeakInfo
 CPostProcessingThis is the main base class that all GRT PostProcessing algorithms should inherit from. A large number of the functions in this class are virtual and simply return false as these functions must be overwridden by the inheriting class
 CPreProcessing
 CPrincipalComponentAnalysisThis class runs the Principal Component Analysis (PCA) algorithm, a dimensionality reduction algorithm that projects an [M N] matrix (where M==samples and N==dimensions) onto a new K dimensional subspace, where K is normally much less than N
 CPSOParticle
 CRadialBasisFunction
 CRandomThis file contains the Random class, a useful wrapper for generating cross platform random functions. This includes functions for uniform distributions (both integer and Float) and Gaussian distributions
 CRandomForests
 CRangeTracker
 CRBMQuantizer
 CRegisterClassifierModuleThis class provides an interface for classes to register themselves with the classifier base class, this enables Classifier algorithms to be automatically be created from just a string, e.g.: Classifier *knn = create( "KNN" );
 CRegisterClustererModuleThis class provides an interface for classes to register themselves with the clusterer base class, this enables Cluterer algorithms to be automatically be created from just a string, e.g.: Clusterer *kmeans = create( "KMeans" );
 CRegisterContextModuleThis class provides an interface for classes to register themselves with the Context base class, this enables Context algorithms to be automatically be created from just a string, e.g.: Context *gate = create( "Gate" );
 CRegisterFeatureExtractionModule
 CRegisterNode
 CRegisterPostProcessingModule
 CRegisterPreProcessingModuleThis class provides an interface for classes to register themselves with the preprocessing base class, this enables PreProcessing algorithms to be automatically be created from just a string, e.g.: PreProcessing *lpf = create( "LowPassFilter" );
 CRegisterRegressifierModuleThis class provides an interface for classes to register themselves with the regressifier base class, this enables Regression algorithms to be automatically be created from just a string, e.g.: Regressifier *mlp = create( "MLP" );
 CRegisterWeakClassifierModule
 CRegressifier
 CRegressionData
 CRegressionSample
 CRegressionTreeThis class implements a basic Regression Tree
 CRegressionTreeNode
 CRMSFilterThe RMSFilter implements a root mean squared (RMS) filter
 CSavitzkyGolayFilterThis implements a Savitzky-Golay filter. This code is based on the Savitzky Golay filter code from Numerical Recipes 3
 CSelfOrganizingMap
 CSoftmax
 CSoftmaxModel
 CSOMQuantizer
 CSVD
 CSVM
 CSwipeDetectorThis class implements a basic swipe detection classification algorithm
 CTestingLog
 CTestingLogMessage
 CTestInstanceResult
 CTestResult
 CTestResultsObserverManager
 CThreadPool
 CThresholdCrossingDetector
 CTimeDomainFeatures
 CTimer
 CTimeseriesBuffer
 CTimeSeriesClassificationData
 CTimeSeriesClassificationSample
 CTimeSeriesClassificationSampleTrimmer
 CTimeSeriesPositionTracker
 CTimeStamp
 CTrainingDataRecordingTimer
 CTrainingLog
 CTrainingLogMessage
 CTrainingResult
 CTrainingResultsObserverManager
 CTree
 CUnlabelledData
 CUtil
 CVector
 CVectorFloat
 CWarningLog
 CWarningLogMessage
 CWeakClassifier
 CWeightedAverageFilterThe WeightedAverageFilter implements a weighted average filter that gives a larger weight to more recent samples, and a smaller weight to older samples
 CZeroCrossingCounter