GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
ClusterTree Class Reference

#include <ClusterTree.h>

Inheritance diagram for ClusterTree:
Clusterer MLBase GRTBase Observer< TrainingResult > Observer< TestInstanceResult >

Public Member Functions

 ClusterTree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSplit=false, const Tree::TrainingMode trainingMode=Tree::BEST_ITERATIVE_SPILT, const bool useScaling=false, const Float minRMSErrorPerNode=0.01)
 
 ClusterTree (const ClusterTree &rhs)
 
virtual ~ClusterTree (void)
 
ClusterTreeoperator= (const ClusterTree &rhs)
 
virtual bool deepCopyFrom (const Clusterer *cluster) override
 
virtual bool train_ (MatrixFloat &trainingData) override
 
virtual bool predict_ (VectorFloat &inputVector) override
 
virtual bool clear () override
 
virtual bool print () const override
 
virtual bool saveModelToFile (std::fstream &file) const override
 
virtual bool loadModelFromFile (std::fstream &file) override
 
ClusterTreeNodedeepCopyTree () const
 
const ClusterTreeNodegetTree () const
 
UINT getPredictedClusterLabel () const
 
Float getMinRMSErrorPerNode () const
 
Tree::TrainingMode getTrainingMode () const
 
UINT getNumSplittingSteps () const
 
UINT getMinNumSamplesPerNode () const
 
UINT getMaxDepth () const
 
UINT getPredictedNodeID () const
 
bool getRemoveFeaturesAtEachSplit () const
 
bool setTrainingMode (const Tree::TrainingMode trainingMode)
 
bool setNumSplittingSteps (const UINT numSplittingSteps)
 
bool setMinNumSamplesPerNode (const UINT minNumSamplesPerNode)
 
bool setMaxDepth (const UINT maxDepth)
 
bool setRemoveFeaturesAtEachSplit (const bool removeFeaturesAtEachSplit)
 
bool setMinRMSErrorPerNode (const Float minRMSErrorPerNode)
 
- Public Member Functions inherited from Clusterer
 Clusterer (const std::string &id="")
 
virtual ~Clusterer (void)
 
bool copyBaseVariables (const Clusterer *clusterer)
 
virtual bool train_ (ClassificationData &trainingData) override
 
virtual bool train_ (UnlabelledData &trainingData) override
 
virtual bool reset () override
 
UINT getNumClusters () const
 
UINT getPredictedClusterLabel () const
 
Float getMaximumLikelihood () const
 
Float getBestDistance () const
 
VectorFloat getClusterLikelihoods () const
 
VectorFloat getClusterDistances () const
 
Vector< UINT > getClusterLabels () const
 
 GRT_DEPRECATED_MSG ("getClustererType() is deprecated, use getId() or getBaseId() instead", std::string getClustererType() const )
 
bool setNumClusters (const UINT numClusters)
 
Clusterercreate () const
 
 GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Clusterer *createNewInstance() const )
 
 GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Clusterer *createInstanceFromString(const std::string &id))
 
ClustererdeepCopy () const
 
const ClusterergetBaseClusterer () const
 
- Public Member Functions inherited from MLBase
 MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)
 
virtual ~MLBase (void)
 
bool copyMLBaseVariables (const MLBase *mlBase)
 
virtual bool train (ClassificationData trainingData)
 
virtual bool train (RegressionData trainingData)
 
virtual bool train_ (RegressionData &trainingData)
 
virtual bool train (RegressionData trainingData, RegressionData validationData)
 
virtual bool train_ (RegressionData &trainingData, RegressionData &validationData)
 
virtual bool train (TimeSeriesClassificationData trainingData)
 
virtual bool train_ (TimeSeriesClassificationData &trainingData)
 
virtual bool train (ClassificationDataStream trainingData)
 
virtual bool train_ (ClassificationDataStream &trainingData)
 
virtual bool train (UnlabelledData trainingData)
 
virtual bool train (MatrixFloat data)
 
virtual bool predict (VectorFloat inputVector)
 
virtual bool predict (MatrixFloat inputMatrix)
 
virtual bool predict_ (MatrixFloat &inputMatrix)
 
virtual bool map (VectorFloat inputVector)
 
virtual bool map_ (VectorFloat &inputVector)
 
virtual bool save (const std::string &filename) const
 
virtual bool load (const std::string &filename)
 
virtual bool save (std::fstream &file) const
 
virtual bool load (std::fstream &file)
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))
 
virtual bool getModel (std::ostream &stream) const
 
virtual std::string getModelAsString () const
 
DataType getInputType () const
 
DataType getOutputType () const
 
BaseType getType () const
 
UINT getNumInputFeatures () const
 
UINT getNumInputDimensions () const
 
UINT getNumOutputDimensions () const
 
UINT getMinNumEpochs () const
 
UINT getMaxNumEpochs () const
 
UINT getBatchSize () const
 
UINT getNumRestarts () const
 
UINT getValidationSetSize () const
 
UINT getNumTrainingIterationsToConverge () const
 
Float getMinChange () const
 
Float getLearningRate () const
 
Float getRMSTrainingError () const
 
 GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )
 
Float getTotalSquaredTrainingError () const
 
Float getRMSValidationError () const
 
Float getValidationSetAccuracy () const
 
VectorFloat getValidationSetPrecision () const
 
VectorFloat getValidationSetRecall () const
 
bool getUseValidationSet () const
 
bool getRandomiseTrainingOrder () const
 
bool getTrained () const
 
 GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )
 
bool getConverged () const
 
bool getScalingEnabled () const
 
bool getIsBaseTypeClassifier () const
 
bool getIsBaseTypeRegressifier () const
 
bool getIsBaseTypeClusterer () const
 
bool getTrainingLoggingEnabled () const
 
bool getTestingLoggingEnabled () const
 
bool enableScaling (const bool useScaling)
 
bool setMaxNumEpochs (const UINT maxNumEpochs)
 
bool setBatchSize (const UINT batchSize)
 
bool setMinNumEpochs (const UINT minNumEpochs)
 
bool setNumRestarts (const UINT numRestarts)
 
bool setMinChange (const Float minChange)
 
bool setLearningRate (const Float learningRate)
 
bool setUseValidationSet (const bool useValidationSet)
 
bool setValidationSetSize (const UINT validationSetSize)
 
bool setRandomiseTrainingOrder (const bool randomiseTrainingOrder)
 
bool setTrainingLoggingEnabled (const bool loggingEnabled)
 
bool setTestingLoggingEnabled (const bool loggingEnabled)
 
bool registerTrainingResultsObserver (Observer< TrainingResult > &observer)
 
bool registerTestResultsObserver (Observer< TestInstanceResult > &observer)
 
bool removeTrainingResultsObserver (const Observer< TrainingResult > &observer)
 
bool removeTestResultsObserver (const Observer< TestInstanceResult > &observer)
 
bool removeAllTrainingObservers ()
 
bool removeAllTestObservers ()
 
bool notifyTrainingResultsObservers (const TrainingResult &data)
 
bool notifyTestResultsObservers (const TestInstanceResult &data)
 
MLBasegetMLBasePointer ()
 
const MLBasegetMLBasePointer () const
 
Vector< TrainingResultgetTrainingResults () const
 
- Public Member Functions inherited from GRTBase
 GRTBase (const std::string &id="")
 
virtual ~GRTBase (void)
 
bool copyGRTBaseVariables (const GRTBase *GRTBase)
 
 GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const )
 
std::string getId () const
 
std::string getLastWarningMessage () const
 
std::string getLastErrorMessage () const
 
std::string getLastInfoMessage () const
 
bool setInfoLoggingEnabled (const bool loggingEnabled)
 
bool setWarningLoggingEnabled (const bool loggingEnabled)
 
bool setErrorLoggingEnabled (const bool loggingEnabled)
 
bool setDebugLoggingEnabled (const bool loggingEnabled)
 
GRTBasegetGRTBasePointer ()
 
const GRTBasegetGRTBasePointer () const
 
Float scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)
 
Float SQR (const Float &x) const
 
- Public Member Functions inherited from Observer< TrainingResult >
virtual void notify (const TrainingResult &data)
 
- Public Member Functions inherited from Observer< TestInstanceResult >
virtual void notify (const TestInstanceResult &data)
 

Static Public Member Functions

static std::string getId ()
 
- Static Public Member Functions inherited from Clusterer
static Clusterercreate (std::string const &id)
 
static Vector< std::string > getRegisteredClusterers ()
 
- Static Public Member Functions inherited from GRTBase
static std::string getGRTVersion (bool returnRevision=true)
 
static std::string getGRTRevison ()
 

Protected Member Functions

ClusterTreeNodebuildTree (const MatrixFloat &trainingData, ClusterTreeNode *parent, Vector< UINT > features, UINT &clusterLabel, UINT nodeID)
 
bool computeBestSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError)
 
bool computeBestSplitBestIterativeSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError)
 
bool computeBestSplitBestRandomSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError)
 
- Protected Member Functions inherited from Clusterer
bool saveClustererSettingsToFile (std::fstream &file) const
 
bool loadClustererSettingsFromFile (std::fstream &file)
 
- Protected Member Functions inherited from MLBase
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 

Protected Attributes

Nodetree
 
UINT minNumSamplesPerNode
 
UINT maxDepth
 
UINT numSplittingSteps
 
bool removeFeaturesAtEachSplit
 
Tree::TrainingMode trainingMode
 
Float minRMSErrorPerNode
 
- Protected Attributes inherited from Clusterer
UINT numClusters
 Number of clusters in the model.
 
UINT predictedClusterLabel
 Stores the predicted cluster label from the most recent predict( )
 
Float maxLikelihood
 
Float bestDistance
 
VectorFloat clusterLikelihoods
 
VectorFloat clusterDistances
 
Vector< UINT > clusterLabels
 
bool converged
 
Vector< MinMaxranges
 
- Protected Attributes inherited from MLBase
bool trained
 
bool useScaling
 
bool converged
 
DataType inputType
 
DataType outputType
 
BaseType baseType
 
UINT numInputDimensions
 
UINT numOutputDimensions
 
UINT numTrainingIterationsToConverge
 
UINT minNumEpochs
 
UINT maxNumEpochs
 
UINT batchSize
 
UINT validationSetSize
 
UINT numRestarts
 
Float learningRate
 
Float minChange
 
Float rmsTrainingError
 
Float rmsValidationError
 
Float totalSquaredTrainingError
 
Float validationSetAccuracy
 
bool useValidationSet
 
bool randomiseTrainingOrder
 
VectorFloat validationSetPrecision
 
VectorFloat validationSetRecall
 
Random random
 
Vector< TrainingResulttrainingResults
 
TrainingResultsObserverManager trainingResultsObserverManager
 
TestResultsObserverManager testResultsObserverManager
 
TrainingLog trainingLog
 
TestingLog testingLog
 
- Protected Attributes inherited from GRTBase
std::string classId
 Stores the name of the class (e.g., MinDist)
 
DebugLog debugLog
 
ErrorLog errorLog
 
InfoLog infoLog
 
WarningLog warningLog
 

Additional Inherited Members

- Public Types inherited from Clusterer
typedef std::map< std::string, Clusterer *(*)() > StringClustererMap
 
- Public Types inherited from MLBase
enum  BaseType {
  BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER,
  PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT
}
 
- Static Protected Member Functions inherited from Clusterer
static StringClustererMapgetMap ()
 

Detailed Description

GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Definition at line 40 of file ClusterTree.h.

Constructor & Destructor Documentation

ClusterTree::ClusterTree ( const UINT  numSplittingSteps = 100,
const UINT  minNumSamplesPerNode = 5,
const UINT  maxDepth = 10,
const bool  removeFeaturesAtEachSplit = false,
const Tree::TrainingMode  trainingMode = Tree::BEST_ITERATIVE_SPILT,
const bool  useScaling = false,
const Float  minRMSErrorPerNode = 0.01 
)

Default Constructor

Parameters
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node. Default value = 100
minNumSamplesPerNodesets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5
maxDepthsets the maximum depth of the tree. Default value = 10
removeFeaturesAtEachSplitsets if a feature is removed at each spilt so it can not be used again. Default value = false
trainingModesets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT
useScalingsets if the training and real-time data should be scaled between [0 1]. Default value = false
minRMSErrorPerNodesets the minimum RMS error that allowed per node, if the RMS error is below that, the node will become a leafNode. Default value = 0.01

Definition at line 36 of file ClusterTree.cpp.

ClusterTree::ClusterTree ( const ClusterTree rhs)

Defines the copy constructor.

Parameters
rhsthe instance from which all the data will be copied into this instance

Definition at line 48 of file ClusterTree.cpp.

ClusterTree::~ClusterTree ( void  )
virtual

Default Destructor

Definition at line 55 of file ClusterTree.cpp.

Member Function Documentation

bool ClusterTree::clear ( )
overridevirtual

This overrides the clear function in the Regressifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.

Returns
returns true if the module was cleared succesfully, false otherwise

Reimplemented from Clusterer.

Definition at line 202 of file ClusterTree.cpp.

bool ClusterTree::deepCopyFrom ( const Clusterer cluster)
overridevirtual

This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Clusterer pointer into this instance

Parameters
clustera pointer to the Clusterer Base Class, this should be pointing to another ClusterTree instance
Returns
returns true if the clone was successfull, false otherwise

Reimplemented from Clusterer.

Definition at line 84 of file ClusterTree.cpp.

ClusterTreeNode * ClusterTree::deepCopyTree ( ) const

Deep copies the tree, returning a pointer to the new clusterer tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.

Returns
returns a pointer to a deep copy of the tree

Definition at line 369 of file ClusterTree.cpp.

std::string ClusterTree::getId ( )
static

Gets a string that represents the ClusterTree class.

Returns
returns a string containing the ID of this class

Definition at line 28 of file ClusterTree.cpp.

UINT ClusterTree::getMaxDepth ( ) const

Gets the maximum depth of the tree.

Returns
returns the maximum depth of the tree

Definition at line 402 of file ClusterTree.cpp.

UINT ClusterTree::getMinNumSamplesPerNode ( ) const

Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.

Returns
returns the minimum number of samples that are allowed per node

Definition at line 398 of file ClusterTree.cpp.

Float ClusterTree::getMinRMSErrorPerNode ( ) const

Gets the minimum root mean squared error value that needs to be exceeded for the tree to continue growing at a specific node. If the RMS error is below this value then the node will be made into a leaf node.

Returns
returns the minimum RMS error per node

Definition at line 386 of file ClusterTree.cpp.

UINT ClusterTree::getNumSplittingSteps ( ) const

Gets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

Returns
returns the number of steps that will be used to search for the best spliting value for each node

Definition at line 394 of file ClusterTree.cpp.

UINT ClusterTree::getPredictedClusterLabel ( ) const

Gets the predicted cluster label from the most recent call to predict( ... ). The cluster label will be zero if the model has been trained but no prediction has been run.

Returns
returns the most recent predicted cluster label

Definition at line 382 of file ClusterTree.cpp.

UINT ClusterTree::getPredictedNodeID ( ) const

This function returns the predictedNodeID, this is ID of the leaf node that was reached during the last prediction call

Returns
returns the predictedNodeID, this will be zero if the tree does not exist or predict has not been called

Definition at line 406 of file ClusterTree.cpp.

bool ClusterTree::getRemoveFeaturesAtEachSplit ( ) const

Gets if a feature is removed at each split so it can not be used again.

Returns
returns true if a feature is removed at each spilt so it can not be used again, false otherwise

Definition at line 415 of file ClusterTree.cpp.

Tree::TrainingMode ClusterTree::getTrainingMode ( ) const

Gets the current training mode. This will be one of the TrainingModes enums.

Returns
returns the training mode

Definition at line 390 of file ClusterTree.cpp.

const ClusterTreeNode * ClusterTree::getTree ( ) const

Gets a pointer to the tree. NULL will be returned if the decision tree model has not be trained.

Returns
returns a const pointer to the tree

Definition at line 378 of file ClusterTree.cpp.

bool ClusterTree::loadModelFromFile ( std::fstream &  file)
overridevirtual

This loads a trained model from a file. This overrides the loadModelFromFile function in the ML base class.

Parameters
filea reference to the file the model will be loaded from
Returns
returns true if the model was loaded successfully, false otherwise

Definition at line 258 of file ClusterTree.cpp.

ClusterTree & ClusterTree::operator= ( const ClusterTree rhs)

Defines how the data from the rhs ClusterTree should be copied to this ClusterTree

Parameters
rhsanother instance of a ClusterTree
Returns
returns a pointer to this instance of the ClusterTree

Definition at line 60 of file ClusterTree.cpp.

bool ClusterTree::predict_ ( VectorFloat inputVector)
overridevirtual

This predicts the class of the inputVector. This overrides the predict function in the ML base class.

Parameters
VectorFloatinputVector: the input Vector to predict
Returns
returns true if the prediction was performed, false otherwise

Reimplemented from MLBase.

Definition at line 169 of file ClusterTree.cpp.

bool ClusterTree::print ( ) const
overridevirtual

Prints the tree to std::cout.

Returns
returns true if the model was printed

Reimplemented from MLBase.

Definition at line 216 of file ClusterTree.cpp.

bool ClusterTree::saveModelToFile ( std::fstream &  file) const
overridevirtual

This saves the trained model to a file. This overrides the saveModelToFile function in the ML base class.

Parameters
filea reference to the file the model will be saved to
Returns
returns true if the model was saved successfully, false otherwise

Definition at line 222 of file ClusterTree.cpp.

bool ClusterTree::setMaxDepth ( const UINT  maxDepth)

Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.

Parameters
maxDepththe maximum depth of the tree
Returns
returns true if the parameter was set, false otherwise

Definition at line 446 of file ClusterTree.cpp.

bool ClusterTree::setMinNumSamplesPerNode ( const UINT  minNumSamplesPerNode)

Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.

Parameters
minNumSamplesPerNodethe minimum number of samples that are allowed per node
Returns
returns true if the parameter was set, false otherwise

Definition at line 437 of file ClusterTree.cpp.

bool ClusterTree::setMinRMSErrorPerNode ( const Float  minRMSErrorPerNode)

Sets the minimum RMS error that needs to be exceeded for the tree to continue growing at a specific node.

Returns
returns true if the parameter was updated

Definition at line 460 of file ClusterTree.cpp.

bool ClusterTree::setNumSplittingSteps ( const UINT  numSplittingSteps)

Sets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.

Parameters
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node.
Returns
returns true if the parameter was set, false otherwise

Definition at line 428 of file ClusterTree.cpp.

bool ClusterTree::setRemoveFeaturesAtEachSplit ( const bool  removeFeaturesAtEachSplit)

Sets if a feature is removed at each split so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.

Parameters
removeFeaturesAtEachSplitif true, then each feature is removed at each spilt so it can not be used again
Returns
returns true if the parameter was set, false otherwise

Definition at line 455 of file ClusterTree.cpp.

bool ClusterTree::setTrainingMode ( const Tree::TrainingMode  trainingMode)

Sets the training mode, this should be one of the TrainingModes enums.

Parameters
trainingModethe new trainingMode, this should be one of the TrainingModes enums
Returns
returns true if the trainingMode was set successfully, false otherwise

Definition at line 419 of file ClusterTree.cpp.

bool ClusterTree::train_ ( MatrixFloat trainingData)
overridevirtual

This trains the ClusterTree model, using the labelled regression data. This overrides the train function in the ML base class.

Parameters
trainingDataa reference to the training data
Returns
returns true if the model was trained, false otherwise

Reimplemented from Clusterer.

Definition at line 114 of file ClusterTree.cpp.


The documentation for this class was generated from the following files: