GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <ClusterTree.h>
Public Member Functions | |
ClusterTree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSplit=false, const Tree::TrainingMode trainingMode=Tree::BEST_ITERATIVE_SPILT, const bool useScaling=false, const Float minRMSErrorPerNode=0.01) | |
ClusterTree (const ClusterTree &rhs) | |
virtual | ~ClusterTree (void) |
ClusterTree & | operator= (const ClusterTree &rhs) |
virtual bool | deepCopyFrom (const Clusterer *cluster) override |
virtual bool | train_ (MatrixFloat &trainingData) override |
virtual bool | predict_ (VectorFloat &inputVector) override |
virtual bool | clear () override |
virtual bool | print () const override |
virtual bool | saveModelToFile (std::fstream &file) const override |
virtual bool | loadModelFromFile (std::fstream &file) override |
ClusterTreeNode * | deepCopyTree () const |
const ClusterTreeNode * | getTree () const |
UINT | getPredictedClusterLabel () const |
Float | getMinRMSErrorPerNode () const |
Tree::TrainingMode | getTrainingMode () const |
UINT | getNumSplittingSteps () const |
UINT | getMinNumSamplesPerNode () const |
UINT | getMaxDepth () const |
UINT | getPredictedNodeID () const |
bool | getRemoveFeaturesAtEachSplit () const |
bool | setTrainingMode (const Tree::TrainingMode trainingMode) |
bool | setNumSplittingSteps (const UINT numSplittingSteps) |
bool | setMinNumSamplesPerNode (const UINT minNumSamplesPerNode) |
bool | setMaxDepth (const UINT maxDepth) |
bool | setRemoveFeaturesAtEachSplit (const bool removeFeaturesAtEachSplit) |
bool | setMinRMSErrorPerNode (const Float minRMSErrorPerNode) |
Public Member Functions inherited from Clusterer | |
Clusterer (const std::string &id="") | |
virtual | ~Clusterer (void) |
bool | copyBaseVariables (const Clusterer *clusterer) |
virtual bool | train_ (ClassificationData &trainingData) override |
virtual bool | train_ (UnlabelledData &trainingData) override |
virtual bool | reset () override |
UINT | getNumClusters () const |
UINT | getPredictedClusterLabel () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
VectorFloat | getClusterLikelihoods () const |
VectorFloat | getClusterDistances () const |
Vector< UINT > | getClusterLabels () const |
GRT_DEPRECATED_MSG ("getClustererType() is deprecated, use getId() or getBaseId() instead", std::string getClustererType() const ) | |
bool | setNumClusters (const UINT numClusters) |
Clusterer * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Clusterer *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Clusterer *createInstanceFromString(const std::string &id)) | |
Clusterer * | deepCopy () const |
const Clusterer & | getBaseClusterer () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Clusterer | |
static Clusterer * | create (std::string const &id) |
static Vector< std::string > | getRegisteredClusterers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
ClusterTreeNode * | buildTree (const MatrixFloat &trainingData, ClusterTreeNode *parent, Vector< UINT > features, UINT &clusterLabel, UINT nodeID) |
bool | computeBestSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeBestSplitBestIterativeSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeBestSplitBestRandomSplit (const MatrixFloat &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
Protected Member Functions inherited from Clusterer | |
bool | saveClustererSettingsToFile (std::fstream &file) const |
bool | loadClustererSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
Node * | tree |
UINT | minNumSamplesPerNode |
UINT | maxDepth |
UINT | numSplittingSteps |
bool | removeFeaturesAtEachSplit |
Tree::TrainingMode | trainingMode |
Float | minRMSErrorPerNode |
Protected Attributes inherited from Clusterer | |
UINT | numClusters |
Number of clusters in the model. | |
UINT | predictedClusterLabel |
Stores the predicted cluster label from the most recent predict( ) | |
Float | maxLikelihood |
Float | bestDistance |
VectorFloat | clusterLikelihoods |
VectorFloat | clusterDistances |
Vector< UINT > | clusterLabels |
bool | converged |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Clusterer | |
typedef std::map< std::string, Clusterer *(*)() > | StringClustererMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Protected Member Functions inherited from Clusterer | |
static StringClustererMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 40 of file ClusterTree.h.
ClusterTree::ClusterTree | ( | const UINT | numSplittingSteps = 100 , |
const UINT | minNumSamplesPerNode = 5 , |
||
const UINT | maxDepth = 10 , |
||
const bool | removeFeaturesAtEachSplit = false , |
||
const Tree::TrainingMode | trainingMode = Tree::BEST_ITERATIVE_SPILT , |
||
const bool | useScaling = false , |
||
const Float | minRMSErrorPerNode = 0.01 |
||
) |
Default Constructor
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. Default value = 100 |
minNumSamplesPerNode | sets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5 |
maxDepth | sets the maximum depth of the tree. Default value = 10 |
removeFeaturesAtEachSplit | sets if a feature is removed at each spilt so it can not be used again. Default value = false |
trainingMode | sets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT |
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
minRMSErrorPerNode | sets the minimum RMS error that allowed per node, if the RMS error is below that, the node will become a leafNode. Default value = 0.01 |
Definition at line 36 of file ClusterTree.cpp.
ClusterTree::ClusterTree | ( | const ClusterTree & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 48 of file ClusterTree.cpp.
|
virtual |
Default Destructor
Definition at line 55 of file ClusterTree.cpp.
|
overridevirtual |
This overrides the clear function in the Regressifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Clusterer.
Definition at line 202 of file ClusterTree.cpp.
|
overridevirtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Clusterer pointer into this instance
cluster | a pointer to the Clusterer Base Class, this should be pointing to another ClusterTree instance |
Reimplemented from Clusterer.
Definition at line 84 of file ClusterTree.cpp.
ClusterTreeNode * ClusterTree::deepCopyTree | ( | ) | const |
Deep copies the tree, returning a pointer to the new clusterer tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.
Definition at line 369 of file ClusterTree.cpp.
|
static |
Gets a string that represents the ClusterTree class.
Definition at line 28 of file ClusterTree.cpp.
UINT ClusterTree::getMaxDepth | ( | ) | const |
Gets the maximum depth of the tree.
Definition at line 402 of file ClusterTree.cpp.
UINT ClusterTree::getMinNumSamplesPerNode | ( | ) | const |
Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.
Definition at line 398 of file ClusterTree.cpp.
Float ClusterTree::getMinRMSErrorPerNode | ( | ) | const |
Gets the minimum root mean squared error value that needs to be exceeded for the tree to continue growing at a specific node. If the RMS error is below this value then the node will be made into a leaf node.
Definition at line 386 of file ClusterTree.cpp.
UINT ClusterTree::getNumSplittingSteps | ( | ) | const |
Gets the number of steps that will be used to search for the best spliting value for each node.
If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.
Definition at line 394 of file ClusterTree.cpp.
UINT ClusterTree::getPredictedClusterLabel | ( | ) | const |
Gets the predicted cluster label from the most recent call to predict( ... ). The cluster label will be zero if the model has been trained but no prediction has been run.
Definition at line 382 of file ClusterTree.cpp.
UINT ClusterTree::getPredictedNodeID | ( | ) | const |
This function returns the predictedNodeID, this is ID of the leaf node that was reached during the last prediction call
Definition at line 406 of file ClusterTree.cpp.
bool ClusterTree::getRemoveFeaturesAtEachSplit | ( | ) | const |
Gets if a feature is removed at each split so it can not be used again.
Definition at line 415 of file ClusterTree.cpp.
Tree::TrainingMode ClusterTree::getTrainingMode | ( | ) | const |
Gets the current training mode. This will be one of the TrainingModes enums.
Definition at line 390 of file ClusterTree.cpp.
const ClusterTreeNode * ClusterTree::getTree | ( | ) | const |
Gets a pointer to the tree. NULL will be returned if the decision tree model has not be trained.
Definition at line 378 of file ClusterTree.cpp.
|
overridevirtual |
This loads a trained model from a file. This overrides the loadModelFromFile function in the ML base class.
file | a reference to the file the model will be loaded from |
Definition at line 258 of file ClusterTree.cpp.
ClusterTree & ClusterTree::operator= | ( | const ClusterTree & | rhs | ) |
Defines how the data from the rhs ClusterTree should be copied to this ClusterTree
rhs | another instance of a ClusterTree |
Definition at line 60 of file ClusterTree.cpp.
|
overridevirtual |
This predicts the class of the inputVector. This overrides the predict function in the ML base class.
VectorFloat | inputVector: the input Vector to predict |
Reimplemented from MLBase.
Definition at line 169 of file ClusterTree.cpp.
|
overridevirtual |
Prints the tree to std::cout.
Reimplemented from MLBase.
Definition at line 216 of file ClusterTree.cpp.
|
overridevirtual |
This saves the trained model to a file. This overrides the saveModelToFile function in the ML base class.
file | a reference to the file the model will be saved to |
Definition at line 222 of file ClusterTree.cpp.
bool ClusterTree::setMaxDepth | ( | const UINT | maxDepth | ) |
Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.
maxDepth | the maximum depth of the tree |
Definition at line 446 of file ClusterTree.cpp.
bool ClusterTree::setMinNumSamplesPerNode | ( | const UINT | minNumSamplesPerNode | ) |
Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.
minNumSamplesPerNode | the minimum number of samples that are allowed per node |
Definition at line 437 of file ClusterTree.cpp.
bool ClusterTree::setMinRMSErrorPerNode | ( | const Float | minRMSErrorPerNode | ) |
Sets the minimum RMS error that needs to be exceeded for the tree to continue growing at a specific node.
Definition at line 460 of file ClusterTree.cpp.
bool ClusterTree::setNumSplittingSteps | ( | const UINT | numSplittingSteps | ) |
Sets the number of steps that will be used to search for the best spliting value for each node.
If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.
A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. |
Definition at line 428 of file ClusterTree.cpp.
bool ClusterTree::setRemoveFeaturesAtEachSplit | ( | const bool | removeFeaturesAtEachSplit | ) |
Sets if a feature is removed at each split so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.
removeFeaturesAtEachSplit | if true, then each feature is removed at each spilt so it can not be used again |
Definition at line 455 of file ClusterTree.cpp.
bool ClusterTree::setTrainingMode | ( | const Tree::TrainingMode | trainingMode | ) |
Sets the training mode, this should be one of the TrainingModes enums.
trainingMode | the new trainingMode, this should be one of the TrainingModes enums |
Definition at line 419 of file ClusterTree.cpp.
|
overridevirtual |
This trains the ClusterTree model, using the labelled regression data. This overrides the train function in the ML base class.
trainingData | a reference to the training data |
Reimplemented from Clusterer.
Definition at line 114 of file ClusterTree.cpp.