|
enum | TestMode { CLASSIFICATION_MODE =0,
REGRESSION_MODE
} |
|
|
unsigned int | testMode |
|
unsigned int | testIteration |
|
unsigned int | classLabel |
|
unsigned int | predictedClassLabel |
|
unsigned int | unProcessedPredictedClassLabel |
|
VectorFloat | classLikelihoods |
|
VectorFloat | classDistances |
|
VectorFloat | regressionData |
|
VectorFloat | targetData |
|
Definition at line 36 of file TestInstanceResult.h.
TestInstanceResult::TestInstanceResult |
( |
| ) |
|
|
inline |
Copy Constructor.
Initializes this instance by copying the data from the rhs instance
- Parameters
-
Definition at line 58 of file TestInstanceResult.h.
TestInstanceResult::~TestInstanceResult |
( |
| ) |
|
|
inline |
unsigned int TestInstanceResult::getClassLabel |
( |
| ) |
const |
|
inline |
Gets the class label. This is only useful in CLASSIFICATION_MODE.
- Returns
- returns the class label
Definition at line 148 of file TestInstanceResult.h.
VectorFloat TestInstanceResult::getClassLikelihoods |
( |
| ) |
const |
|
inline |
Gets the class likelihoods vector. This is only useful in CLASSIFICATION_MODE.
- Returns
- returns the class likelihoods vector
Definition at line 195 of file TestInstanceResult.h.
Gets the class distances vector. This is only useful in CLASSIFICATION_MODE.
- Returns
- returns the class distances vector
Definition at line 204 of file TestInstanceResult.h.
Float TestInstanceResult::getMaximumLikelihood |
( |
| ) |
const |
|
inline |
Gets the maximum likelihood. This is only useful in CLASSIFICATION_MODE.
- Returns
- returns the maximum likelihood
Definition at line 166 of file TestInstanceResult.h.
unsigned int TestInstanceResult::getPredictedClassLabel |
( |
| ) |
const |
|
inline |
Gets the predicted class label. This is only useful in CLASSIFICATION_MODE.
- Returns
- returns the predicted class label
Definition at line 157 of file TestInstanceResult.h.
Float TestInstanceResult::getSquaredError |
( |
| ) |
const |
|
inline |
Gets the squared error between the regressionData and the target data. This is only useful in REGRESSION_MODE.
- Returns
- returns the squared error between the regression estimate and the target data
Definition at line 181 of file TestInstanceResult.h.
unsigned int TestInstanceResult::getTestIteration |
( |
| ) |
const |
|
inline |
Gets the test iteration, this represents which test example the test results correspond to.
- Returns
- returns the test iteration
Definition at line 139 of file TestInstanceResult.h.
unsigned int TestInstanceResult::getTestMode |
( |
| ) |
const |
|
inline |
Gets the current test mode, this will be one of the TestMode enums.
- Returns
- returns the current test mode, this will be one of the TestMode enums
Definition at line 130 of file TestInstanceResult.h.
Defines the Equals Operator.
This copies the data from the rhs instance to this instance, returning a reference to the current instance.
- Parameters
-
Definition at line 76 of file TestInstanceResult.h.
bool TestInstanceResult::setClassificationResult |
( |
const unsigned int |
testIteration, |
|
|
const unsigned int |
classLabel, |
|
|
const unsigned int |
predictedClassLabel, |
|
|
const unsigned int |
unProcessedPredictedClassLabel, |
|
|
const VectorFloat & |
classLikelihoods, |
|
|
const VectorFloat & |
classDistances |
|
) |
| |
|
inline |
Sets the training result for classification data. This will place the training mode into CLASSIFICATION_MODE.
- Parameters
-
trainingIteration | the current training iteration (or epoch) |
accuracy | the accuracy for the current training iteration |
- Returns
- returns true if the training result was set successfully
Definition at line 98 of file TestInstanceResult.h.
bool TestInstanceResult::setRegressionResult |
( |
const unsigned int |
testIteration, |
|
|
const VectorFloat & |
regressionData, |
|
|
const VectorFloat & |
targetData |
|
) |
| |
|
inline |
Sets the training result for regression data. This will place the training mode into REGRESSION_MODE.
- Parameters
-
trainingIteration | the current training iteration (or epoch) |
totalSquaredTrainingError | the total squared training error for the current iteration |
rootMeanSquaredTrainingError | the root mean squared training error for the current iteration |
- Returns
- returns true if the training result was set successfully
Definition at line 117 of file TestInstanceResult.h.
The documentation for this class was generated from the following file: