GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
MinDist (bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=10.0, UINT numClusters=10) | |
MinDist (const MinDist &rhs) | |
virtual | ~MinDist (void) |
MinDist & | operator= (const MinDist &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
virtual bool | recomputeNullRejectionThresholds () |
UINT | getNumClusters () const |
Vector< MinDistModel > | getModels () const |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
bool | setNumClusters (UINT numClusters) |
Public Member Functions inherited from Classifier | |
Classifier (const std::string &classifierId="") | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
virtual bool | computeAccuracy (const ClassificationData &data, Float &accuracy) |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
Float | getTrainingSetAccuracy () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (const UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (const bool useNullRejection) |
virtual bool | setNullRejectionThresholds (const VectorFloat &newRejectionThresholds) |
bool | getTimeseriesCompatible () const |
Classifier * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id)) | |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Classifier | |
static Classifier * | create (const std::string &id) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
UINT | numClusters |
Vector< MinDistModel > | models |
Protected Attributes inherited from Classifier | |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
Float | trainingSetAccuracy |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
MinDist::MinDist | ( | bool | useScaling = false , |
bool | useNullRejection = false , |
||
Float | nullRejectionCoeff = 10.0 , |
||
UINT | numClusters = 10 |
||
) |
Default Constructor
useScaling | sets if the training and prediction data should be scaled to a specific range. Default value is useScaling = false |
useNullRejection | sets if null rejection will be used for the realtime prediction. If useNullRejection is set to true then the predictedClassLabel will be set to 0 (which is the default null label) if the distance between the inputVector and the top K datum is greater than the null rejection threshold for the top predicted class. The null rejection threshold is computed for each class during the training phase. Default value is useNullRejection = false |
nullRejectionCoeff | sets the null rejection coefficient, this is a multipler controlling the null rejection threshold for each class. This will only be used if the useNullRejection parameter is set to true. Default value is nullRejectionCoeff = 10.0 |
numClusters | sets how many clusters each model will try to find during the training phase. Default value = 10 |
Definition at line 33 of file MinDist.cpp.
MinDist::MinDist | ( | const MinDist & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 43 of file MinDist.cpp.
|
virtual |
Default Destructor
Definition at line 49 of file MinDist.cpp.
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
Definition at line 257 of file MinDist.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an MinDist instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another MinDist instance |
Reimplemented from Classifier.
Definition at line 65 of file MinDist.cpp.
|
static |
Gets a string that represents the MinDist class.
Definition at line 28 of file MinDist.cpp.
Vector< MinDistModel > MinDist::getModels | ( | ) | const |
Returns the MinDist models for each of the classes.
Definition at line 294 of file MinDist.cpp.
UINT MinDist::getNumClusters | ( | ) | const |
Returns the number of clusters in the model.
Definition at line 290 of file MinDist.cpp.
|
virtual |
This loads a trained MinDist model from a file. This overrides the load function in the Classifier base class.
file | a reference to the file the MinDist model will be loaded from |
Reimplemented from MLBase.
Definition at line 340 of file MinDist.cpp.
|
protected |
Read the ranges if needed
Definition at line 470 of file MinDist.cpp.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
Definition at line 199 of file MinDist.cpp.
|
virtual |
This recomputes the null rejection thresholds for each of the classes in the MinDist model. This will be called automatically if the setGamma(Float gamma) function is called. The MinDist model needs to be trained first before this function can be called.
Reimplemented from Classifier.
Definition at line 268 of file MinDist.cpp.
|
virtual |
This saves the trained MinDist model to a file. This overrides the save function in the Classifier base class.
file | a reference to the file the MinDist model will be saved to |
Reimplemented from MLBase.
Definition at line 298 of file MinDist.cpp.
|
virtual |
Sets the nullRejectionCoeff parameter. The nullRejectionCoeff parameter is a multipler controlling the null rejection threshold for each class. This function will also recompute the null rejection thresholds.
Reimplemented from Classifier.
Definition at line 280 of file MinDist.cpp.
bool MinDist::setNumClusters | ( | UINT | numClusters | ) |
Sets the numClusters parameter. The numClusters parameter sets how many clusters each model will try to find during the training phase. You should call this function before you train the model.
Definition at line 462 of file MinDist.cpp.
|
virtual |
This trains the MinDist model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 83 of file MinDist.cpp.