GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
RandomForests (const DecisionTreeNode &decisionTreeNode=DecisionTreeClusterNode(), const UINT forestSize=10, const UINT numRandomSplits=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const Tree::TrainingMode trainingMode=Tree::BEST_RANDOM_SPLIT, const bool removeFeaturesAtEachSplit=true, const bool useScaling=false, const Float bootstrappedDatasetWeight=0.8) | |
RandomForests (const RandomForests &rhs) | |
virtual | ~RandomForests (void) |
RandomForests & | operator= (const RandomForests &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorDouble &inputVector) |
virtual bool | clear () |
virtual bool | print () const |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
bool | combineModels (const RandomForests &forest) |
UINT | getForestSize () const |
UINT | getNumRandomSplits () const |
UINT | getMinNumSamplesPerNode () const |
UINT | getMaxDepth () const |
UINT | getTrainingMode () const |
const Vector< DecisionTreeNode * > & | getForest () const |
bool | getRemoveFeaturesAtEachSplit () const |
Float | getBootstrappedDatasetWeight () const |
DecisionTreeNode * | getTree (const UINT index) const |
DecisionTreeNode * | deepCopyDecisionTreeNode () const |
VectorDouble | getFeatureWeights (const bool normWeights=true) const |
MatrixDouble | getLeafNodeFeatureWeights (const bool normWeights=true) const |
bool | setForestSize (const UINT forestSize) |
bool | setNumRandomSplits (const UINT numSplittingSteps) |
bool | setMinNumSamplesPerNode (const UINT minNumSamplesPerNode) |
bool | setMaxDepth (const UINT maxDepth) |
bool | setRemoveFeaturesAtEachSplit (const bool removeFeaturesAtEachSplit) |
GRT_DEPRECATED_MSG ("setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt) is deprecated, use setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit) instead", bool setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt)) | |
bool | setTrainingMode (const Tree::TrainingMode trainingMode) |
bool | setDecisionTreeNode (const DecisionTreeNode &node) |
bool | setBootstrappedDatasetWeight (const Float bootstrappedDatasetWeight) |
Public Member Functions inherited from Classifier | |
Classifier (const std::string &classifierId="") | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
virtual bool | computeAccuracy (const ClassificationData &data, Float &accuracy) |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
Float | getTrainingSetAccuracy () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (const UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (const bool useNullRejection) |
virtual bool | setNullRejectionCoeff (const Float nullRejectionCoeff) |
virtual bool | setNullRejectionThresholds (const VectorFloat &newRejectionThresholds) |
virtual bool | recomputeNullRejectionThresholds () |
bool | getTimeseriesCompatible () const |
Classifier * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id)) | |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Classifier | |
static Classifier * | create (const std::string &id) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Attributes | |
UINT | forestSize |
UINT | numRandomSplits |
UINT | minNumSamplesPerNode |
UINT | maxDepth |
Tree::TrainingMode | trainingMode |
bool | removeFeaturesAtEachSplit |
Float | bootstrappedDatasetWeight |
DecisionTreeNode * | decisionTreeNode |
Vector< DecisionTreeNode * > | forest |
Protected Attributes inherited from Classifier | |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
Float | trainingSetAccuracy |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
Definition at line 43 of file RandomForests.h.
RandomForests::RandomForests | ( | const DecisionTreeNode & | decisionTreeNode = DecisionTreeClusterNode() , |
const UINT | forestSize = 10 , |
||
const UINT | numRandomSplits = 100 , |
||
const UINT | minNumSamplesPerNode = 5 , |
||
const UINT | maxDepth = 10 , |
||
const Tree::TrainingMode | trainingMode = Tree::BEST_RANDOM_SPLIT , |
||
const bool | removeFeaturesAtEachSplit = true , |
||
const bool | useScaling = false , |
||
const Float | bootstrappedDatasetWeight = 0.8 |
||
) |
Default Constructor
decisionTreeNode | sets the type of decision tree node that will be used when training a new RandomForest model. Default: DecisionTreeClusterNode |
forestSize | sets the number of decision trees that will be trained. Default value = 10 |
numRandomSplits | sets the number of random spilts that will be used to search for the best spliting value for each node. Default value = 100 |
minNumSamplesPerNode | sets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5 |
maxDepth | sets the maximum depth of the tree. Default value = 10 |
removeFeaturesAtEachSplit | sets if features are removed at each stage in the tree |
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
bootstrappedDatasetWeight | sets the size of the bootstrapped dataset used to train a tree, the number of bootstrapped samples will be M*bootstrappedDatasetWeight, where M is the number of samples in the original training dataset |
Definition at line 33 of file RandomForests.cpp.
RandomForests::RandomForests | ( | const RandomForests & | rhs | ) |
Defines the copy constructor.
const | RandomForests &rhs: the instance from which all the data will be copied into this instance |
Definition at line 51 of file RandomForests.cpp.
|
virtual |
Default Destructor
Definition at line 58 of file RandomForests.cpp.
|
virtual |
This function clears the RandomForests module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
Definition at line 347 of file RandomForests.cpp.
bool RandomForests::combineModels | ( | const RandomForests & | forest | ) |
This function enables multiple random forest models to be merged together. The model in forest will be combined with this instance. For example, if this instance has 10 trees, and the other forest has 15 trees, the resulting model will have 25 trees. Both forests must be trained and have the same number of inputs.
forest | another random forest instance that will be merged with this instance |
Definition at line 604 of file RandomForests.cpp.
DecisionTreeNode * RandomForests::deepCopyDecisionTreeNode | ( | ) | const |
Gets a pointer to the decision tree node. NULL will be returned if the decision tree node has not been set.
Definition at line 668 of file RandomForests.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an RandomForests instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another RandomForests instance |
Reimplemented from Classifier.
Definition at line 105 of file RandomForests.cpp.
Float RandomForests::getBootstrappedDatasetWeight | ( | ) | const |
Gets bootstrapped dataset weight, this controls the size of the bootstrapped dataset used to train each tree in the forest. The number of bootstrapped samples will be M*bootstrappedDatasetWeight, where M is the number of samples in the original training dataset.
Definition at line 660 of file RandomForests.cpp.
VectorDouble RandomForests::getFeatureWeights | ( | const bool | normWeights = true | ) | const |
Returns a vector of weights reflecting the importance of each feature in the random forest model. The size of the vector will match the number of inputs (i.e. features) to the classifier. The value in each element in the vector represents the weight (i.e. importance) of the corresponding feature. A higher value represents a higher weight.
The vector will be empty if the model has not been trained.
normWeights | if true, the weights will be normalized so they sum to 1.0 |
Definition at line 684 of file RandomForests.cpp.
const Vector< DecisionTreeNode * > & RandomForests::getForest | ( | ) | const |
Gets a vector of DecisionTreeNodes pointers that represent the trees in the forest.
Definition at line 664 of file RandomForests.cpp.
UINT RandomForests::getForestSize | ( | ) | const |
Gets the number of trees in the random forest.
Definition at line 636 of file RandomForests.cpp.
|
static |
Gets a string that represents the DecisionTree class.
Definition at line 28 of file RandomForests.cpp.
MatrixDouble RandomForests::getLeafNodeFeatureWeights | ( | const bool | normWeights = true | ) | const |
Returns a vector of weights reflecting the importance of each feature in the random forest model. The size of the vector will match the number of inputs (i.e. features) to the classifier. The value in each element in the vector represents the weight (i.e. importance) of the corresponding feature. A higher value represents a higher weight.
The vector will be empty if the model has not been trained.
normWeights | if true, the weights will be normalized so they sum to 1.0 |
Definition at line 710 of file RandomForests.cpp.
UINT RandomForests::getMaxDepth | ( | ) | const |
Gets the maximum depth of the tree.
Definition at line 648 of file RandomForests.cpp.
UINT RandomForests::getMinNumSamplesPerNode | ( | ) | const |
Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.
Definition at line 644 of file RandomForests.cpp.
UINT RandomForests::getNumRandomSplits | ( | ) | const |
Gets the number of random splits that will be used to search for the best spliting value for each node.
Definition at line 640 of file RandomForests.cpp.
bool RandomForests::getRemoveFeaturesAtEachSplit | ( | ) | const |
Gets if a feature is removed at each spilt so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.
Definition at line 656 of file RandomForests.cpp.
UINT RandomForests::getTrainingMode | ( | ) | const |
Gets the training mode that will be used to train each DecisionTree in the forest.
Definition at line 652 of file RandomForests.cpp.
DecisionTreeNode * RandomForests::getTree | ( | const UINT | index | ) | const |
Gets a pointer to the tree at the specific index in the forest. NULL will be returned if the model has not been trained or the index is invalid.
Definition at line 677 of file RandomForests.cpp.
RandomForests::GRT_DEPRECATED_MSG | ( | "setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt) is | deprecated, |
use setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit) instead" | , | ||
bool | setRemoveFeaturesAtEachSpiltconst bool removeFeaturesAtEachSpilt | ||
) |
|
virtual |
This loads a trained RandomForests model from a file. This overrides the load function in the Classifier base class.
file | a reference to the file the RandomForests model will be loaded from |
Reimplemented from MLBase.
Definition at line 442 of file RandomForests.cpp.
RandomForests & RandomForests::operator= | ( | const RandomForests & | rhs | ) |
Defines how the data from the rhs RandomForests should be copied to this RandomForests
rhs | another instance of a RandomForests |
Definition at line 69 of file RandomForests.cpp.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
Definition at line 289 of file RandomForests.cpp.
|
virtual |
This function will print the model and settings to the display log.
Reimplemented from MLBase.
Definition at line 370 of file RandomForests.cpp.
|
virtual |
This saves the trained RandomForests model to a file. This overrides the save function in the Classifier base class.
file | a reference to the file the RandomForests model will be saved to |
Reimplemented from MLBase.
Definition at line 392 of file RandomForests.cpp.
bool RandomForests::setBootstrappedDatasetWeight | ( | const Float | bootstrappedDatasetWeight | ) |
Sets the size of the bootstrapped dataset used to train a tree. The number of bootstrapped samples will be M*bootstrappedDatasetWeight, where M is the number of samples in the original training dataset. The weight should be in the range [> 0.0 <= 1.0]
Definition at line 804 of file RandomForests.cpp.
bool RandomForests::setDecisionTreeNode | ( | const DecisionTreeNode & | node | ) |
Sets the decision tree node, this will be used as the starting node the next time the RandomForest model is trained.
Definition at line 793 of file RandomForests.cpp.
bool RandomForests::setForestSize | ( | const UINT | forestSize | ) |
Sets the number of trees in the forest. Changing this value will clear any previously trained model.
forestSize | sets the number of trees in the forest. |
Definition at line 742 of file RandomForests.cpp.
bool RandomForests::setMaxDepth | ( | const UINT | maxDepth | ) |
Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.
maxDepth | the maximum depth of the tree |
Definition at line 767 of file RandomForests.cpp.
bool RandomForests::setMinNumSamplesPerNode | ( | const UINT | minNumSamplesPerNode | ) |
Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.
minNumSamplesPerNode | the minimum number of samples that are allowed per node |
Definition at line 759 of file RandomForests.cpp.
bool RandomForests::setNumRandomSplits | ( | const UINT | numSplittingSteps | ) |
Sets the number of steps that will be used to search for the best spliting value for each node.
A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. |
Definition at line 751 of file RandomForests.cpp.
bool RandomForests::setRemoveFeaturesAtEachSplit | ( | const bool | removeFeaturesAtEachSplit | ) |
Sets if a feature is removed at each spilt so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.
removeFeaturesAtEachSplit | if true, then each feature is removed at each spilt so it can not be used again |
Definition at line 775 of file RandomForests.cpp.
bool RandomForests::setTrainingMode | ( | const Tree::TrainingMode | trainingMode | ) |
Sets the training mode used to train each DecisionTree in the forest, this should be one of the DecisionTree::TrainingModes enums.
trainingMode | the new trainingMode, this should be one of the DecisionTree::TrainingModes enums |
Definition at line 784 of file RandomForests.cpp.
|
virtual |
This trains the RandomForests model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 149 of file RandomForests.cpp.