GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
RandomForests Member List

This is the complete list of members for RandomForests, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
bestDistance (defined in Classifier)Classifierprotected
bootstrappedDatasetWeight (defined in RandomForests)RandomForestsprotected
classDistances (defined in Classifier)Classifierprotected
classIdGRTBaseprotected
Classifier(const std::string &classifierId="")Classifier
CLASSIFIER enum value (defined in MLBase)MLBase
classifierMode (defined in Classifier)Classifierprotected
ClassifierModes enum name (defined in Classifier)Classifier
classLabels (defined in Classifier)Classifierprotected
classLikelihoods (defined in Classifier)Classifierprotected
clear()RandomForestsvirtual
CLUSTERER enum value (defined in MLBase)MLBase
combineModels(const RandomForests &forest)RandomForests
computeAccuracy(const ClassificationData &data, Float &accuracy)Classifiervirtual
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in MLBase)MLBaseprotected
copyBaseVariables(const Classifier *classifier)Classifier
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
create(const std::string &id)Classifierstatic
create() const Classifier
debugLog (defined in GRTBase)GRTBaseprotected
decisionTreeNode (defined in RandomForests)RandomForestsprotected
deepCopy() const Classifier
deepCopyDecisionTreeNode() const RandomForests
deepCopyFrom(const Classifier *classifier)RandomForestsvirtual
enableNullRejection(const bool useNullRejection)Classifier
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
forest (defined in RandomForests)RandomForestsprotected
forestSize (defined in RandomForests)RandomForestsprotected
getBaseClassifier() const Classifier
getBatchSize() const MLBase
getBestDistance() const Classifier
getBootstrappedDatasetWeight() const RandomForests
getClassDistances() const Classifier
getClassifierPointer() const Classifier
getClassifierType() const Classifier
getClassLabelIndexValue(const UINT classLabel) const Classifier
getClassLabels() const Classifier
getClassLikelihoods() const Classifier
getConverged() const MLBase
getFeatureWeights(const bool normWeights=true) const RandomForests
getForest() const RandomForests
getForestSize() const RandomForests
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getId()RandomForestsstatic
Classifier::getId() const GRTBase
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLeafNodeFeatureWeights(const bool normWeights=true) const RandomForests
getLearningRate() const MLBase
getMap()Classifierinlineprotectedstatic
getMaxDepth() const RandomForests
getMaximumLikelihood() const Classifier
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMinNumSamplesPerNode() const RandomForests
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getNullRejectionCoeff() const Classifier
getNullRejectionEnabled() const Classifier
getNullRejectionThresholds() const Classifier
getNumClasses() const Classifiervirtual
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumRandomSplits() const RandomForests
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPhase() const Classifier
getPredictedClassLabel() const Classifier
getRandomiseTrainingOrder() const MLBase
getRanges() const Classifier
getRegisteredClassifiers()Classifierstatic
getRemoveFeaturesAtEachSplit() const RandomForests
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getSupportsNullRejection() const Classifier
getTestingLoggingEnabled() const MLBase
getTimeseriesCompatible() const Classifierinline
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingLoggingEnabled() const MLBase
getTrainingMode() const RandomForests
getTrainingResults() const MLBase
getTrainingSetAccuracy() const Classifier
getTree(const UINT index) const RandomForests
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt) is deprecated, use setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit) instead", bool setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt))RandomForests
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const ) (defined in Classifier)Classifier
GRT_DEPRECATED_MSG("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id)) (defined in Classifier)Classifier
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
inputType (defined in MLBase)MLBaseprotected
learningRate (defined in MLBase)MLBaseprotected
load(std::fstream &file)RandomForestsvirtual
Classifier::load(const std::string &filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)Classifierprotected
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxDepth (defined in RandomForests)RandomForestsprotected
maxLikelihood (defined in Classifier)Classifierprotected
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
minNumSamplesPerNode (defined in RandomForests)RandomForestsprotected
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
nullRejectionCoeff (defined in Classifier)Classifierprotected
nullRejectionThresholds (defined in Classifier)Classifierprotected
numClasses (defined in Classifier)Classifierprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRandomSplits (defined in RandomForests)RandomForestsprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator=(const RandomForests &rhs)RandomForests
outputType (defined in MLBase)MLBaseprotected
phase (defined in Classifier)Classifierprotected
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorDouble &inputVector)RandomForestsvirtual
Classifier::predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictedClassLabel (defined in Classifier)Classifierprotected
print() const RandomForestsvirtual
random (defined in MLBase)MLBaseprotected
RandomForests(const DecisionTreeNode &decisionTreeNode=DecisionTreeClusterNode(), const UINT forestSize=10, const UINT numRandomSplits=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const Tree::TrainingMode trainingMode=Tree::BEST_RANDOM_SPLIT, const bool removeFeaturesAtEachSplit=true, const bool useScaling=false, const Float bootstrappedDatasetWeight=0.8)RandomForests
RandomForests(const RandomForests &rhs)RandomForests
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
ranges (defined in Classifier)Classifierprotected
recomputeNullRejectionThresholds()Classifierinlinevirtual
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeFeaturesAtEachSplit (defined in RandomForests)RandomForestsprotected
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()Classifiervirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(std::fstream &file) const RandomForestsvirtual
Classifier::save(const std::string &filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const Classifierprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
setBatchSize(const UINT batchSize)MLBase
setBootstrappedDatasetWeight(const Float bootstrappedDatasetWeight)RandomForests
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setDecisionTreeNode(const DecisionTreeNode &node)RandomForests
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setForestSize(const UINT forestSize)RandomForests
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxDepth(const UINT maxDepth)RandomForests
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setMinNumSamplesPerNode(const UINT minNumSamplesPerNode)RandomForests
setNullRejectionCoeff(const Float nullRejectionCoeff)Classifiervirtual
setNullRejectionThresholds(const VectorFloat &newRejectionThresholds)Classifiervirtual
setNumRandomSplits(const UINT numSplittingSteps)RandomForests
setNumRestarts(const UINT numRestarts)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit)RandomForests
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingMode(const Tree::TrainingMode trainingMode)RandomForests
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
STANDARD_CLASSIFIER_MODE enum value (defined in Classifier)Classifier
StringClassifierMap typedefClassifier
supportsNullRejection (defined in Classifier)Classifierprotected
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
TIMESERIES_CLASSIFIER_MODE enum value (defined in Classifier)Classifier
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)RandomForestsvirtual
Classifier::train_(RegressionData &trainingData)MLBasevirtual
Classifier::train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
Classifier::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
Classifier::train_(ClassificationDataStream &trainingData)MLBasevirtual
Classifier::train_(UnlabelledData &trainingData)MLBasevirtual
Classifier::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingMode (defined in RandomForests)RandomForestsprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
trainingSetAccuracy (defined in Classifier)Classifierprotected
useNullRejection (defined in Classifier)Classifierprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~Classifier(void)Classifiervirtual
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~RandomForests(void)RandomForestsvirtual