GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
DecisionTree Class Reference
Inheritance diagram for DecisionTree:
Classifier MLBase GRTBase Observer< TrainingResult > Observer< TestInstanceResult >

Public Member Functions

 DecisionTree (const DecisionTreeNode &decisionTreeNode=DecisionTreeClusterNode(), const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSplit=false, const Tree::TrainingMode trainingMode=Tree::TrainingMode::BEST_ITERATIVE_SPILT, const UINT numSplittingSteps=100, const bool useScaling=false)
 
 DecisionTree (const DecisionTree &rhs)
 
virtual ~DecisionTree (void)
 
DecisionTreeoperator= (const DecisionTree &rhs)
 
virtual bool deepCopyFrom (const Classifier *classifier) override
 
virtual bool train_ (ClassificationData &trainingData) override
 
virtual bool predict_ (VectorFloat &inputVector) override
 
virtual bool clear () override
 
virtual bool recomputeNullRejectionThresholds () override
 
virtual bool save (std::fstream &file) const override
 
virtual bool load (std::fstream &file) override
 
virtual bool getModel (std::ostream &stream) const override
 
DecisionTreeNodedeepCopyTree () const
 
DecisionTreeNodedeepCopyDecisionTreeNode () const
 
const DecisionTreeNodegetTree () const
 
Tree::TrainingMode getTrainingMode () const
 
UINT getNumSplittingSteps () const
 
UINT getMinNumSamplesPerNode () const
 
UINT getMaxDepth () const
 
UINT getPredictedNodeID () const
 
bool getRemoveFeaturesAtEachSplit () const
 
bool setTrainingMode (const Tree::TrainingMode trainingMode)
 
bool setNumSplittingSteps (const UINT numSplittingSteps)
 
bool setMinNumSamplesPerNode (const UINT minNumSamplesPerNode)
 
bool setMaxDepth (const UINT maxDepth)
 
bool setRemoveFeaturesAtEachSplit (const bool removeFeaturesAtEachSplit)
 
 GRT_DEPRECATED_MSG ("setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt) is deprecated, use setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit) instead", bool setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt))
 
bool setDecisionTreeNode (const DecisionTreeNode &node)
 
- Public Member Functions inherited from Classifier
 Classifier (const std::string &classifierId="")
 
virtual ~Classifier (void)
 
bool copyBaseVariables (const Classifier *classifier)
 
virtual bool reset ()
 
virtual bool computeAccuracy (const ClassificationData &data, Float &accuracy)
 
std::string getClassifierType () const
 
bool getSupportsNullRejection () const
 
bool getNullRejectionEnabled () const
 
Float getNullRejectionCoeff () const
 
Float getMaximumLikelihood () const
 
Float getBestDistance () const
 
Float getPhase () const
 
Float getTrainingSetAccuracy () const
 
virtual UINT getNumClasses () const
 
UINT getClassLabelIndexValue (const UINT classLabel) const
 
UINT getPredictedClassLabel () const
 
VectorFloat getClassLikelihoods () const
 
VectorFloat getClassDistances () const
 
VectorFloat getNullRejectionThresholds () const
 
Vector< UINT > getClassLabels () const
 
Vector< MinMaxgetRanges () const
 
bool enableNullRejection (const bool useNullRejection)
 
virtual bool setNullRejectionCoeff (const Float nullRejectionCoeff)
 
virtual bool setNullRejectionThresholds (const VectorFloat &newRejectionThresholds)
 
bool getTimeseriesCompatible () const
 
Classifiercreate () const
 
 GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const )
 
 GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id))
 
ClassifierdeepCopy () const
 
const ClassifiergetClassifierPointer () const
 
const ClassifiergetBaseClassifier () const
 
- Public Member Functions inherited from MLBase
 MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)
 
virtual ~MLBase (void)
 
bool copyMLBaseVariables (const MLBase *mlBase)
 
virtual bool train (ClassificationData trainingData)
 
virtual bool train (RegressionData trainingData)
 
virtual bool train_ (RegressionData &trainingData)
 
virtual bool train (RegressionData trainingData, RegressionData validationData)
 
virtual bool train_ (RegressionData &trainingData, RegressionData &validationData)
 
virtual bool train (TimeSeriesClassificationData trainingData)
 
virtual bool train_ (TimeSeriesClassificationData &trainingData)
 
virtual bool train (ClassificationDataStream trainingData)
 
virtual bool train_ (ClassificationDataStream &trainingData)
 
virtual bool train (UnlabelledData trainingData)
 
virtual bool train_ (UnlabelledData &trainingData)
 
virtual bool train (MatrixFloat data)
 
virtual bool train_ (MatrixFloat &data)
 
virtual bool predict (VectorFloat inputVector)
 
virtual bool predict (MatrixFloat inputMatrix)
 
virtual bool predict_ (MatrixFloat &inputMatrix)
 
virtual bool map (VectorFloat inputVector)
 
virtual bool map_ (VectorFloat &inputVector)
 
virtual bool print () const
 
virtual bool save (const std::string &filename) const
 
virtual bool load (const std::string &filename)
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))
 
virtual std::string getModelAsString () const
 
DataType getInputType () const
 
DataType getOutputType () const
 
BaseType getType () const
 
UINT getNumInputFeatures () const
 
UINT getNumInputDimensions () const
 
UINT getNumOutputDimensions () const
 
UINT getMinNumEpochs () const
 
UINT getMaxNumEpochs () const
 
UINT getBatchSize () const
 
UINT getNumRestarts () const
 
UINT getValidationSetSize () const
 
UINT getNumTrainingIterationsToConverge () const
 
Float getMinChange () const
 
Float getLearningRate () const
 
Float getRMSTrainingError () const
 
 GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )
 
Float getTotalSquaredTrainingError () const
 
Float getRMSValidationError () const
 
Float getValidationSetAccuracy () const
 
VectorFloat getValidationSetPrecision () const
 
VectorFloat getValidationSetRecall () const
 
bool getUseValidationSet () const
 
bool getRandomiseTrainingOrder () const
 
bool getTrained () const
 
 GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )
 
bool getConverged () const
 
bool getScalingEnabled () const
 
bool getIsBaseTypeClassifier () const
 
bool getIsBaseTypeRegressifier () const
 
bool getIsBaseTypeClusterer () const
 
bool getTrainingLoggingEnabled () const
 
bool getTestingLoggingEnabled () const
 
bool enableScaling (const bool useScaling)
 
bool setMaxNumEpochs (const UINT maxNumEpochs)
 
bool setBatchSize (const UINT batchSize)
 
bool setMinNumEpochs (const UINT minNumEpochs)
 
bool setNumRestarts (const UINT numRestarts)
 
bool setMinChange (const Float minChange)
 
bool setLearningRate (const Float learningRate)
 
bool setUseValidationSet (const bool useValidationSet)
 
bool setValidationSetSize (const UINT validationSetSize)
 
bool setRandomiseTrainingOrder (const bool randomiseTrainingOrder)
 
bool setTrainingLoggingEnabled (const bool loggingEnabled)
 
bool setTestingLoggingEnabled (const bool loggingEnabled)
 
bool registerTrainingResultsObserver (Observer< TrainingResult > &observer)
 
bool registerTestResultsObserver (Observer< TestInstanceResult > &observer)
 
bool removeTrainingResultsObserver (const Observer< TrainingResult > &observer)
 
bool removeTestResultsObserver (const Observer< TestInstanceResult > &observer)
 
bool removeAllTrainingObservers ()
 
bool removeAllTestObservers ()
 
bool notifyTrainingResultsObservers (const TrainingResult &data)
 
bool notifyTestResultsObservers (const TestInstanceResult &data)
 
MLBasegetMLBasePointer ()
 
const MLBasegetMLBasePointer () const
 
Vector< TrainingResultgetTrainingResults () const
 
- Public Member Functions inherited from GRTBase
 GRTBase (const std::string &id="")
 
virtual ~GRTBase (void)
 
bool copyGRTBaseVariables (const GRTBase *GRTBase)
 
 GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const )
 
std::string getId () const
 
std::string getLastWarningMessage () const
 
std::string getLastErrorMessage () const
 
std::string getLastInfoMessage () const
 
bool setInfoLoggingEnabled (const bool loggingEnabled)
 
bool setWarningLoggingEnabled (const bool loggingEnabled)
 
bool setErrorLoggingEnabled (const bool loggingEnabled)
 
bool setDebugLoggingEnabled (const bool loggingEnabled)
 
GRTBasegetGRTBasePointer ()
 
const GRTBasegetGRTBasePointer () const
 
Float scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)
 
Float SQR (const Float &x) const
 
- Public Member Functions inherited from Observer< TrainingResult >
virtual void notify (const TrainingResult &data)
 
- Public Member Functions inherited from Observer< TestInstanceResult >
virtual void notify (const TestInstanceResult &data)
 

Static Public Member Functions

static std::string getId ()
 
- Static Public Member Functions inherited from Classifier
static Classifiercreate (const std::string &id)
 
static Vector< std::string > getRegisteredClassifiers ()
 
- Static Public Member Functions inherited from GRTBase
static std::string getGRTVersion (bool returnRevision=true)
 
static std::string getGRTRevison ()
 

Protected Member Functions

bool loadLegacyModelFromFile_v1 (std::fstream &file)
 
bool loadLegacyModelFromFile_v2 (std::fstream &file)
 
bool loadLegacyModelFromFile_v3 (std::fstream &file)
 
bool trainTree (ClassificationData trainingData, const ClassificationData &trainingDataCopy, const ClassificationData &validationData, Vector< UINT > features)
 
DecisionTreeNodebuildTree (ClassificationData &trainingData, DecisionTreeNode *parent, Vector< UINT > features, const Vector< UINT > &classLabels, UINT nodeID)
 
Float getNodeDistance (const VectorFloat &x, const UINT nodeID)
 
Float getNodeDistance (const VectorFloat &x, const VectorFloat &y)
 
- Protected Member Functions inherited from Classifier
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 
- Protected Member Functions inherited from MLBase
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 

Protected Attributes

DecisionTreeNodedecisionTreeNode
 
std::map< UINT, VectorFloatnodeClusters
 
VectorFloat classClusterMean
 
VectorFloat classClusterStdDev
 
DecisionTreeNodetree
 
UINT minNumSamplesPerNode
 
UINT maxDepth
 
UINT numSplittingSteps
 
bool removeFeaturesAtEachSplit
 
Tree::TrainingMode trainingMode
 
- Protected Attributes inherited from Classifier
bool supportsNullRejection
 
bool useNullRejection
 
UINT numClasses
 
UINT predictedClassLabel
 
UINT classifierMode
 
Float nullRejectionCoeff
 
Float maxLikelihood
 
Float bestDistance
 
Float phase
 
Float trainingSetAccuracy
 
VectorFloat classLikelihoods
 
VectorFloat classDistances
 
VectorFloat nullRejectionThresholds
 
Vector< UINT > classLabels
 
Vector< MinMaxranges
 
- Protected Attributes inherited from MLBase
bool trained
 
bool useScaling
 
bool converged
 
DataType inputType
 
DataType outputType
 
BaseType baseType
 
UINT numInputDimensions
 
UINT numOutputDimensions
 
UINT numTrainingIterationsToConverge
 
UINT minNumEpochs
 
UINT maxNumEpochs
 
UINT batchSize
 
UINT validationSetSize
 
UINT numRestarts
 
Float learningRate
 
Float minChange
 
Float rmsTrainingError
 
Float rmsValidationError
 
Float totalSquaredTrainingError
 
Float validationSetAccuracy
 
bool useValidationSet
 
bool randomiseTrainingOrder
 
VectorFloat validationSetPrecision
 
VectorFloat validationSetRecall
 
Random random
 
Vector< TrainingResulttrainingResults
 
TrainingResultsObserverManager trainingResultsObserverManager
 
TestResultsObserverManager testResultsObserverManager
 
TrainingLog trainingLog
 
TestingLog testingLog
 
- Protected Attributes inherited from GRTBase
std::string classId
 Stores the name of the class (e.g., MinDist)
 
DebugLog debugLog
 
ErrorLog errorLog
 
InfoLog infoLog
 
WarningLog warningLog
 

Additional Inherited Members

- Public Types inherited from Classifier
enum  ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE }
 
typedef std::map< std::string, Classifier *(*)() > StringClassifierMap
 
- Public Types inherited from MLBase
enum  BaseType {
  BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER,
  PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT
}
 
- Static Protected Member Functions inherited from Classifier
static StringClassifierMapgetMap ()
 

Detailed Description

Constructor & Destructor Documentation

DecisionTree::DecisionTree ( const DecisionTreeNode decisionTreeNode = DecisionTreeClusterNode(),
const UINT  minNumSamplesPerNode = 5,
const UINT  maxDepth = 10,
const bool  removeFeaturesAtEachSplit = false,
const Tree::TrainingMode  trainingMode = Tree::TrainingMode::BEST_ITERATIVE_SPILT,
const UINT  numSplittingSteps = 100,
const bool  useScaling = false 
)

Default Constructor

Parameters
decisionTreeNodesets the type of decision tree node that will be used when training a new decision tree model. Default: DecisionTreeClusterNode
minNumSamplesPerNodesets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5
maxDepthsets the maximum depth of the tree. Default value = 10
removeFeaturesAtEachSplitsets if a feature is removed at each split so it can not be used again. Default value = false
trainingModesets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node. Default value = 100
useScalingsets if the training and real-time data should be scaled between [0 1]. Default value = false

Definition at line 33 of file DecisionTree.cpp.

DecisionTree::DecisionTree ( const DecisionTree rhs)

Defines the copy constructor.

Parameters
rhsthe instance from which all the data will be copied into this instance

Definition at line 48 of file DecisionTree.cpp.

DecisionTree::~DecisionTree ( void  )
virtual

Default Destructor

Definition at line 56 of file DecisionTree.cpp.

Member Function Documentation

bool DecisionTree::clear ( )
overridevirtual

This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.

Returns
returns true if the module was cleared succesfully, false otherwise

Reimplemented from Classifier.

Definition at line 499 of file DecisionTree.cpp.

DecisionTreeNode * DecisionTree::deepCopyDecisionTreeNode ( ) const

Gets a pointer to the decision tree node. NULL will be returned if the decision tree node has not been set.

Returns
returns a pointer to a deep copy of the decision tree node

Definition at line 842 of file DecisionTree.cpp.

bool DecisionTree::deepCopyFrom ( const Classifier classifier)
overridevirtual

This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an DecisionTree instance) into this instance

Parameters
classifiera pointer to the Classifier Base Class, this should be pointing to another DecisionTree instance
Returns
returns true if the clone was successfull, false otherwise

Reimplemented from Classifier.

Definition at line 96 of file DecisionTree.cpp.

DecisionTreeNode * DecisionTree::deepCopyTree ( ) const

Deep copies the decision tree, returning a pointer to the new decision tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.

Returns
returns a pointer to a deep copy of the decision tree

Definition at line 833 of file DecisionTree.cpp.

std::string DecisionTree::getId ( )
static

Gets a string that represents the DecisionTree class.

Returns
returns a string containing the ID of this class

Definition at line 28 of file DecisionTree.cpp.

UINT DecisionTree::getMaxDepth ( ) const

Gets the maximum depth of the tree.

Returns
returns the maximum depth of the tree

Definition at line 1022 of file DecisionTree.cpp.

UINT DecisionTree::getMinNumSamplesPerNode ( ) const

Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.

Returns
returns the minimum number of samples that are allowed per node

Definition at line 1018 of file DecisionTree.cpp.

bool DecisionTree::getModel ( std::ostream &  stream) const
overridevirtual

This function adds the current model to the formatted stream. This function should be overwritten by the derived class.

Parameters
filea reference to the stream the model will be added to
Returns
returns true if the model was added successfully, false otherwise

Reimplemented from MLBase.

Definition at line 825 of file DecisionTree.cpp.

UINT DecisionTree::getNumSplittingSteps ( ) const

Gets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

Returns
returns the number of steps that will be used to search for the best spliting value for each node

Definition at line 1014 of file DecisionTree.cpp.

UINT DecisionTree::getPredictedNodeID ( ) const

This function returns the predictedNodeID, this is ID of the leaf node that was reached during the last prediction call

Returns
returns the predictedNodeID, this will be zero if the tree does not exist or predict has not been called

Definition at line 1026 of file DecisionTree.cpp.

bool DecisionTree::getRemoveFeaturesAtEachSplit ( ) const

Gets if a feature is removed at each split so it can not be used again.

Returns
returns true if a feature is removed at each spilt so it can not be used again, false otherwise

Definition at line 1035 of file DecisionTree.cpp.

Tree::TrainingMode DecisionTree::getTrainingMode ( ) const

Gets the current training mode. This will be one of the TrainingModes enums.

Returns
returns the training mode

Definition at line 1010 of file DecisionTree.cpp.

const DecisionTreeNode * DecisionTree::getTree ( ) const

Gets a pointer to the decision tree. NULL will be returned if the decision tree model has not be trained.

Returns
returns a const pointer to the decision tree

Definition at line 851 of file DecisionTree.cpp.

DecisionTree::GRT_DEPRECATED_MSG ( "setRemoveFeaturesAtEachSpilt(const bool removeFeaturesAtEachSpilt) is  deprecated,
use setRemoveFeaturesAtEachSplit(const bool removeFeaturesAtEachSplit) instead"  ,
bool   setRemoveFeaturesAtEachSpiltconst bool removeFeaturesAtEachSpilt 
)
bool DecisionTree::load ( std::fstream &  file)
overridevirtual

This loads a trained DecisionTree model from a file. This overrides the load function in the Classifier base class.

Parameters
filea reference to the file the DecisionTree model will be loaded from
Returns
returns true if the model was loaded successfully, false otherwise

Reimplemented from MLBase.

Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 622 of file DecisionTree.cpp.

bool DecisionTree::loadLegacyModelFromFile_v1 ( std::fstream &  file)
protected

Read the ranges if needed

Definition at line 1084 of file DecisionTree.cpp.

DecisionTree & DecisionTree::operator= ( const DecisionTree rhs)

Defines how the data from the rhs DecisionTree should be copied to this DecisionTree

Parameters
rhsanother instance of a DecisionTree
Returns
returns a pointer to this instance of the DecisionTree

Definition at line 66 of file DecisionTree.cpp.

bool DecisionTree::predict_ ( VectorFloat inputVector)
overridevirtual

This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.

Parameters
inputVectorthe input Vector to classify
Returns
returns true if the prediction was performed, false otherwise

Reimplemented from MLBase.

Definition at line 423 of file DecisionTree.cpp.

bool DecisionTree::recomputeNullRejectionThresholds ( )
overridevirtual

This recomputes the null rejection thresholds for each of the classes in the DecisionTree model. The DecisionTree model needs to be trained first before this function can be called.

Returns
returns true if the null rejection thresholds were updated successfully, false otherwise

Reimplemented from Classifier.

Definition at line 519 of file DecisionTree.cpp.

bool DecisionTree::save ( std::fstream &  file) const
overridevirtual

This saves the trained DecisionTree model to a file. This overrides the save function in the Classifier base class.

Parameters
filea reference to the file the DecisionTree model will be saved to
Returns
returns true if the model was saved successfully, false otherwise

Reimplemented from MLBase.

Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 541 of file DecisionTree.cpp.

bool DecisionTree::setDecisionTreeNode ( const DecisionTreeNode node)

Sets the decision tree node, this will be used as the starting node the next time the DecisionTree model is trained.

Returns
returns true if the decision tree node was updated, false otherwise
Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 855 of file DecisionTree.cpp.

bool DecisionTree::setMaxDepth ( const UINT  maxDepth)

Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.

Parameters
maxDepththe maximum depth of the tree
Returns
returns true if the parameter was set, false otherwise
Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 1066 of file DecisionTree.cpp.

bool DecisionTree::setMinNumSamplesPerNode ( const UINT  minNumSamplesPerNode)

Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.

Parameters
minNumSamplesPerNodethe minimum number of samples that are allowed per node
Returns
returns true if the parameter was set, false otherwise
Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 1057 of file DecisionTree.cpp.

bool DecisionTree::setNumSplittingSteps ( const UINT  numSplittingSteps)

Sets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.

Parameters
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node.
Returns
returns true if the parameter was set, false otherwise
Examples:
ClassificationModulesExamples/DecisionTreeExample/DecisionTreeExample.cpp.

Definition at line 1048 of file DecisionTree.cpp.

bool DecisionTree::setRemoveFeaturesAtEachSplit ( const bool  removeFeaturesAtEachSplit)

Sets if a feature is removed at each split so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.

Parameters
removeFeaturesAtEachSplitif true, then each feature is removed at each spilt so it can not be used again
Returns
returns true if the parameter was set, false otherwise

Definition at line 1075 of file DecisionTree.cpp.

bool DecisionTree::setTrainingMode ( const Tree::TrainingMode  trainingMode)

Sets the training mode, this should be one of the TrainingModes enums.

Parameters
trainingModethe new trainingMode, this should be one of the TrainingModes enums
Returns
returns true if the trainingMode was set successfully, false otherwise

Definition at line 1039 of file DecisionTree.cpp.

bool DecisionTree::train_ ( ClassificationData trainingData)
overridevirtual

This trains the DecisionTree model, using the labelled classification data. This overrides the train function in the Classifier base class.

Parameters
trainingDataa reference to the training data
Returns
returns true if the DecisionTree model was trained, false otherwise

Reimplemented from MLBase.

Definition at line 132 of file DecisionTree.cpp.


The documentation for this class was generated from the following files: