GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
DecisionTreeNode (const std::string id="DecisionTreeNode") | |
DecisionTreeNode (const DecisionTreeNode &rhs)=delete | |
virtual | ~DecisionTreeNode () |
DecisionTreeNode & | operator= (const DecisionTreeNode &rhs)=delete |
virtual bool | predict_ (VectorFloat &x, VectorFloat &classLikelihoods) override |
virtual bool | computeBestSplit (const UINT &trainingMode, const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
virtual bool | clear () override |
virtual bool | getModel (std::ostream &stream) const override |
virtual Node * | deepCopy () const override |
UINT | getNodeSize () const |
UINT | getNumClasses () const |
VectorFloat | getClassProbabilities () const |
bool | setLeafNode (const UINT nodeSize, const VectorFloat &classProbabilities) |
bool | setNodeSize (const UINT nodeSize) |
bool | setClassProbabilities (const VectorFloat &classProbabilities) |
Public Member Functions inherited from Node | |
Node (const std::string id="Node") | |
virtual | ~Node () |
virtual bool | predict_ (VectorFloat &x) override |
virtual bool | computeFeatureWeights (VectorFloat &weights) const |
virtual bool | computeLeafNodeWeights (MatrixFloat &weights) const |
virtual bool | print () const override |
virtual bool | save (std::fstream &file) const override |
virtual bool | load (std::fstream &file) override |
std::string | getNodeType () const |
UINT | getDepth () const |
UINT | getNodeID () const |
UINT | getPredictedNodeID () const |
UINT | getMaxDepth () const |
bool | getIsLeafNode () const |
bool | getHasParent () const |
bool | getHasLeftChild () const |
bool | getHasRightChild () const |
Node * | getParent () const |
Node * | getLeftChild () const |
Node * | getRightChild () const |
bool | initNode (Node *parent, const UINT depth, const UINT nodeID, const bool isLeafNode=false) |
bool | setParent (Node *parent) |
bool | setLeftChild (Node *leftChild) |
bool | setRightChild (Node *rightChild) |
bool | setDepth (const UINT depth) |
bool | setNodeID (const UINT nodeID) |
bool | setIsLeafNode (const bool isLeafNode) |
Node * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static UINT | getClassLabelIndexValue (UINT classLabel, const Vector< UINT > &classLabels) |
Static Public Member Functions inherited from Node | |
static Node * | createInstanceFromString (std::string const &nodeType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
virtual bool | computeBestSplitBestIterativeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
virtual bool | computeBestSplitBestRandomSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
virtual bool | saveParametersToFile (std::fstream &file) const override |
virtual bool | loadParametersFromFile (std::fstream &file) override |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
UINT | nodeSize |
VectorFloat | classProbabilities |
Protected Attributes inherited from Node | |
std::string | nodeType |
UINT | depth |
UINT | nodeID |
UINT | predictedNodeID |
bool | isLeafNode |
Node * | parent |
Node * | leftChild |
Node * | rightChild |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterNode< DecisionTreeNode > | registerModule |
Additional Inherited Members | |
Public Types inherited from Node | |
typedef std::map< std::string, Node *(*)() > | StringNodeMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Protected Member Functions inherited from Node | |
static StringNodeMap * | getMap () |
Definition at line 41 of file DecisionTreeNode.h.
DecisionTreeNode::DecisionTreeNode | ( | const std::string | id = "DecisionTreeNode" | ) |
Default Constructor. Sets all the pointers to NULL.
Definition at line 10 of file DecisionTreeNode.cpp.
|
delete |
Disable the copy constructor.
|
virtual |
Default Destructor. Cleans up any memory.
Definition at line 14 of file DecisionTreeNode.cpp.
|
overridevirtual |
This functions cleans up any dynamic memory assigned by the node. It will recursively clear the memory for the left and right child nodes.
Reimplemented from Node.
Reimplemented in DecisionTreeClusterNode, DecisionTreeThresholdNode, and DecisionTreeTripleFeatureNode.
Definition at line 82 of file DecisionTreeNode.cpp.
|
virtual |
This function calls the best spliting algorithm based on the current trainingMode.
This function will return true if the best spliting algorithm found a split, false otherwise.
trainingMode | the training mode to use, this should be one of the |
numSplittingSteps | sets the number of iterations that will be used to search for the best threshold |
trainingData | the training data to use for the best split search |
features | a Vector containing the indexs of the features that can be used for the search |
classLabels | a Vector containing the class labels for the search |
featureIndex | this will store the best feature index found during the search |
minError | this will store the minimum error found during the search |
Definition at line 64 of file DecisionTreeNode.cpp.
|
overridevirtual |
This function returns a deep copy of the DecisionTreeNode and all it's children. The user is responsible for managing the dynamic data that is returned from this function as a pointer.
Reimplemented from Node.
Reimplemented in DecisionTreeClusterNode, DecisionTreeThresholdNode, and DecisionTreeTripleFeatureNode.
Definition at line 118 of file DecisionTreeNode.cpp.
VectorFloat DecisionTreeNode::getClassProbabilities | ( | ) | const |
This function returns the class probabilities Vector.
Definition at line 157 of file DecisionTreeNode.cpp.
|
overridevirtual |
This function adds the current model to the formatted stream. This function should be overwritten by the derived class.
stream | a reference to the stream the model will be added to |
Reimplemented from Node.
Reimplemented in DecisionTreeClusterNode, DecisionTreeThresholdNode, and DecisionTreeTripleFeatureNode.
Definition at line 93 of file DecisionTreeNode.cpp.
UINT DecisionTreeNode::getNodeSize | ( | ) | const |
This function returns the nodeSize, this is the number of training samples that reached the node during the training phase.
Definition at line 149 of file DecisionTreeNode.cpp.
UINT DecisionTreeNode::getNumClasses | ( | ) | const |
This function returns the number of classes in the class probabilities Vector.
Definition at line 153 of file DecisionTreeNode.cpp.
|
inlineoverrideprotectedvirtual |
This loads the Decision Tree Node parameters from a file.
file | a reference to the file the parameters will be loaded from |
Reimplemented from Node.
Reimplemented in DecisionTreeClusterNode, DecisionTreeTripleFeatureNode, and DecisionTreeThresholdNode.
Definition at line 217 of file DecisionTreeNode.h.
|
delete |
Disable the equals operator.
|
overridevirtual |
This function recursively calls predict on the input vector x, when it reaches the leaf node it stores the class probability associated with that leaf node in the output vector y.
NOTE: This function should only be called after the decision tree model has been trained.
x | the input Vector that will be used for the prediction |
classLikelihoods | a reference to a Vector that will store the class probabilities |
Reimplemented from Node.
Definition at line 18 of file DecisionTreeNode.cpp.
|
inlineoverrideprotectedvirtual |
This saves the DecisionTreeNode custom parameters to a file. It will be called automatically by the Node base class if the save function is called.
file | a reference to the file the parameters will be saved to |
Reimplemented from Node.
Reimplemented in DecisionTreeClusterNode, DecisionTreeTripleFeatureNode, and DecisionTreeThresholdNode.
Definition at line 188 of file DecisionTreeNode.h.
bool DecisionTreeNode::setClassProbabilities | ( | const VectorFloat & | classProbabilities | ) |
This function sets the Decision Tree Node class probabilities.
classProbabilities | the Vector of class probabilities at this node |
Definition at line 173 of file DecisionTreeNode.cpp.
bool DecisionTreeNode::setLeafNode | ( | const UINT | nodeSize, |
const VectorFloat & | classProbabilities | ||
) |
This function sets the Decision Tree Node as a leaf node.
nodeSize | sets the node size, this is the number of training samples at that node |
classProbabilities | the Vector of class probabilities at this node |
Definition at line 161 of file DecisionTreeNode.cpp.
bool DecisionTreeNode::setNodeSize | ( | const UINT | nodeSize | ) |
This function sets the Decision Tree Node nodeSize.
nodeSize | sets the node size, this is the number of training samples at that node |
Definition at line 168 of file DecisionTreeNode.cpp.