GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
DecisionTreeThresholdNode () | |
virtual | ~DecisionTreeThresholdNode () |
virtual bool | predict_ (VectorFloat &x) override |
virtual bool | clear () override |
virtual bool | print () const override |
virtual bool | getModel (std::ostream &stream) const override |
virtual Node * | deepCopy () const override |
UINT | getFeatureIndex () const |
Float | getThreshold () const |
bool | set (const UINT nodeSize, const UINT featureIndex, const Float threshold, const VectorFloat &classProbabilities) |
Public Member Functions inherited from DecisionTreeNode | |
DecisionTreeNode (const std::string id="DecisionTreeNode") | |
DecisionTreeNode (const DecisionTreeNode &rhs)=delete | |
virtual | ~DecisionTreeNode () |
DecisionTreeNode & | operator= (const DecisionTreeNode &rhs)=delete |
virtual bool | predict_ (VectorFloat &x, VectorFloat &classLikelihoods) override |
virtual bool | computeBestSplit (const UINT &trainingMode, const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
UINT | getNodeSize () const |
UINT | getNumClasses () const |
VectorFloat | getClassProbabilities () const |
bool | setLeafNode (const UINT nodeSize, const VectorFloat &classProbabilities) |
bool | setNodeSize (const UINT nodeSize) |
bool | setClassProbabilities (const VectorFloat &classProbabilities) |
Public Member Functions inherited from Node | |
Node (const std::string id="Node") | |
virtual | ~Node () |
virtual bool | computeFeatureWeights (VectorFloat &weights) const |
virtual bool | computeLeafNodeWeights (MatrixFloat &weights) const |
virtual bool | save (std::fstream &file) const override |
virtual bool | load (std::fstream &file) override |
std::string | getNodeType () const |
UINT | getDepth () const |
UINT | getNodeID () const |
UINT | getPredictedNodeID () const |
UINT | getMaxDepth () const |
bool | getIsLeafNode () const |
bool | getHasParent () const |
bool | getHasLeftChild () const |
bool | getHasRightChild () const |
Node * | getParent () const |
Node * | getLeftChild () const |
Node * | getRightChild () const |
bool | initNode (Node *parent, const UINT depth, const UINT nodeID, const bool isLeafNode=false) |
bool | setParent (Node *parent) |
bool | setLeftChild (Node *leftChild) |
bool | setRightChild (Node *rightChild) |
bool | setDepth (const UINT depth) |
bool | setNodeID (const UINT nodeID) |
bool | setIsLeafNode (const bool isLeafNode) |
Node * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
virtual bool | computeBestSplitBestIterativeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override |
virtual bool | computeBestSplitBestRandomSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override |
virtual bool | saveParametersToFile (std::fstream &file) const override |
virtual bool | loadParametersFromFile (std::fstream &file) override |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
UINT | featureIndex |
Float | threshold |
Protected Attributes inherited from DecisionTreeNode | |
UINT | nodeSize |
VectorFloat | classProbabilities |
Protected Attributes inherited from Node | |
std::string | nodeType |
UINT | depth |
UINT | nodeID |
UINT | predictedNodeID |
bool | isLeafNode |
Node * | parent |
Node * | leftChild |
Node * | rightChild |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterNode< DecisionTreeThresholdNode > | registerModule |
Static Protected Attributes inherited from DecisionTreeNode | |
static RegisterNode< DecisionTreeNode > | registerModule |
Additional Inherited Members | |
Public Types inherited from Node | |
typedef std::map< std::string, Node *(*)() > | StringNodeMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Public Member Functions inherited from DecisionTreeNode | |
static UINT | getClassLabelIndexValue (UINT classLabel, const Vector< UINT > &classLabels) |
Static Public Member Functions inherited from Node | |
static Node * | createInstanceFromString (std::string const &nodeType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Node | |
static StringNodeMap * | getMap () |
Definition at line 43 of file DecisionTreeThresholdNode.h.
DecisionTreeThresholdNode::DecisionTreeThresholdNode | ( | ) |
Default Constructor. Sets all the pointers to NULL.
trainingMode | sets the training algorithm used during the training of the node |
Definition at line 10 of file DecisionTreeThresholdNode.cpp.
|
virtual |
Default Destructor. Cleans up any memory.
Definition at line 14 of file DecisionTreeThresholdNode.cpp.
|
overridevirtual |
This functions cleans up any dynamic memory assigned by the node. It will recursively clear the memory for the left and right child nodes.
Reimplemented from DecisionTreeNode.
Definition at line 25 of file DecisionTreeThresholdNode.cpp.
|
overridevirtual |
This function returns a deep copy of the DecisionTreeThresholdNode and all it's children. The user is responsible for managing the dynamic data that is returned from this function as a pointer.
Reimplemented from DecisionTreeNode.
Definition at line 73 of file DecisionTreeThresholdNode.cpp.
UINT DecisionTreeThresholdNode::getFeatureIndex | ( | ) | const |
This function returns the featureIndex, this is index in the input data that the decision threshold is computed on.
Definition at line 106 of file DecisionTreeThresholdNode.cpp.
|
overridevirtual |
This function adds the current model to the formatted stream. This function should be overwritten by the derived class.
file | a reference to the stream the model will be added to |
Reimplemented from DecisionTreeNode.
Definition at line 48 of file DecisionTreeThresholdNode.cpp.
Float DecisionTreeThresholdNode::getThreshold | ( | ) | const |
This function returns the threshold, this is the value used to compute the decision threshold.
Definition at line 110 of file DecisionTreeThresholdNode.cpp.
|
overrideprotectedvirtual |
This loads the Decision Tree Node parameters from a file.
file | a reference to the file the parameters will be loaded from |
Reimplemented from DecisionTreeNode.
Definition at line 298 of file DecisionTreeThresholdNode.cpp.
|
overridevirtual |
This function predicts if the input is greater than or equal to the nodes threshold. If the input is greater than or equal to the nodes threshold then this function will return true, otherwise it will return false.
NOTE: The threshold and featureIndex should be set first BEFORE this function is called. The threshold and featureIndex can be set by training the node through the DecisionTree class.
x | the input vector that will be used for the prediction |
Reimplemented from Node.
Definition at line 18 of file DecisionTreeThresholdNode.cpp.
|
overridevirtual |
This functions prints the node data to std::out. It will recursively print all the child nodes.
Reimplemented from Node.
Definition at line 36 of file DecisionTreeThresholdNode.cpp.
|
overrideprotectedvirtual |
This saves the DecisionTreeNode custom parameters to a file. It will be called automatically by the Node base class if the save function is called.
file | a reference to the file the parameters will be saved to |
Reimplemented from DecisionTreeNode.
Definition at line 277 of file DecisionTreeThresholdNode.cpp.
bool DecisionTreeThresholdNode::set | ( | const UINT | nodeSize, |
const UINT | featureIndex, | ||
const Float | threshold, | ||
const VectorFloat & | classProbabilities | ||
) |
This function sets the Decision Tree Threshold Node.
nodeSize | sets the node size, this is the number of training samples at that node |
featureIndex | sets the index of the feature that should be used for the threshold spilt |
threshold | set the threshold value used for the spilt |
classProbabilities | the vector of class probabilities at this node |
Definition at line 114 of file DecisionTreeThresholdNode.cpp.