GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
DecisionTreeTripleFeatureNode Class Reference

This class implements a DecisionTreeTripleFeatureNode, which is a specific type of node used for a DecisionTree. More...

#include <DecisionTreeTripleFeatureNode.h>

Inheritance diagram for DecisionTreeTripleFeatureNode:
DecisionTreeNode Node MLBase GRTBase Observer< TrainingResult > Observer< TestInstanceResult >

Public Member Functions

 DecisionTreeTripleFeatureNode ()
 
virtual ~DecisionTreeTripleFeatureNode ()
 
virtual bool predict_ (VectorFloat &x) override
 
virtual bool clear () override
 
virtual bool print () const override
 
virtual bool getModel (std::ostream &stream) const override
 
virtual NodedeepCopy () const override
 
UINT getFeatureIndexA () const
 
UINT getFeatureIndexB () const
 
UINT getFeatureIndexC () const
 
bool set (const UINT nodeSize, const UINT featureIndexA, const UINT featureIndexB, const UINT featureIndexC, const VectorFloat &classProbabilities)
 
- Public Member Functions inherited from DecisionTreeNode
 DecisionTreeNode (const std::string id="DecisionTreeNode")
 
 DecisionTreeNode (const DecisionTreeNode &rhs)=delete
 
virtual ~DecisionTreeNode ()
 
DecisionTreeNodeoperator= (const DecisionTreeNode &rhs)=delete
 
virtual bool predict_ (VectorFloat &x, VectorFloat &classLikelihoods) override
 
virtual bool computeBestSplit (const UINT &trainingMode, const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError)
 
UINT getNodeSize () const
 
UINT getNumClasses () const
 
VectorFloat getClassProbabilities () const
 
bool setLeafNode (const UINT nodeSize, const VectorFloat &classProbabilities)
 
bool setNodeSize (const UINT nodeSize)
 
bool setClassProbabilities (const VectorFloat &classProbabilities)
 
- Public Member Functions inherited from Node
 Node (const std::string id="Node")
 
virtual ~Node ()
 
virtual bool computeFeatureWeights (VectorFloat &weights) const
 
virtual bool computeLeafNodeWeights (MatrixFloat &weights) const
 
virtual bool save (std::fstream &file) const override
 
virtual bool load (std::fstream &file) override
 
std::string getNodeType () const
 
UINT getDepth () const
 
UINT getNodeID () const
 
UINT getPredictedNodeID () const
 
UINT getMaxDepth () const
 
bool getIsLeafNode () const
 
bool getHasParent () const
 
bool getHasLeftChild () const
 
bool getHasRightChild () const
 
NodegetParent () const
 
NodegetLeftChild () const
 
NodegetRightChild () const
 
bool initNode (Node *parent, const UINT depth, const UINT nodeID, const bool isLeafNode=false)
 
bool setParent (Node *parent)
 
bool setLeftChild (Node *leftChild)
 
bool setRightChild (Node *rightChild)
 
bool setDepth (const UINT depth)
 
bool setNodeID (const UINT nodeID)
 
bool setIsLeafNode (const bool isLeafNode)
 
NodecreateNewInstance () const
 
- Public Member Functions inherited from MLBase
 MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)
 
virtual ~MLBase (void)
 
bool copyMLBaseVariables (const MLBase *mlBase)
 
virtual bool train (ClassificationData trainingData)
 
virtual bool train_ (ClassificationData &trainingData)
 
virtual bool train (RegressionData trainingData)
 
virtual bool train_ (RegressionData &trainingData)
 
virtual bool train (RegressionData trainingData, RegressionData validationData)
 
virtual bool train_ (RegressionData &trainingData, RegressionData &validationData)
 
virtual bool train (TimeSeriesClassificationData trainingData)
 
virtual bool train_ (TimeSeriesClassificationData &trainingData)
 
virtual bool train (ClassificationDataStream trainingData)
 
virtual bool train_ (ClassificationDataStream &trainingData)
 
virtual bool train (UnlabelledData trainingData)
 
virtual bool train_ (UnlabelledData &trainingData)
 
virtual bool train (MatrixFloat data)
 
virtual bool train_ (MatrixFloat &data)
 
virtual bool predict (VectorFloat inputVector)
 
virtual bool predict (MatrixFloat inputMatrix)
 
virtual bool predict_ (MatrixFloat &inputMatrix)
 
virtual bool map (VectorFloat inputVector)
 
virtual bool map_ (VectorFloat &inputVector)
 
virtual bool reset ()
 
virtual bool save (const std::string &filename) const
 
virtual bool load (const std::string &filename)
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))
 
virtual std::string getModelAsString () const
 
DataType getInputType () const
 
DataType getOutputType () const
 
BaseType getType () const
 
UINT getNumInputFeatures () const
 
UINT getNumInputDimensions () const
 
UINT getNumOutputDimensions () const
 
UINT getMinNumEpochs () const
 
UINT getMaxNumEpochs () const
 
UINT getBatchSize () const
 
UINT getNumRestarts () const
 
UINT getValidationSetSize () const
 
UINT getNumTrainingIterationsToConverge () const
 
Float getMinChange () const
 
Float getLearningRate () const
 
Float getRMSTrainingError () const
 
 GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )
 
Float getTotalSquaredTrainingError () const
 
Float getRMSValidationError () const
 
Float getValidationSetAccuracy () const
 
VectorFloat getValidationSetPrecision () const
 
VectorFloat getValidationSetRecall () const
 
bool getUseValidationSet () const
 
bool getRandomiseTrainingOrder () const
 
bool getTrained () const
 
 GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )
 
bool getConverged () const
 
bool getScalingEnabled () const
 
bool getIsBaseTypeClassifier () const
 
bool getIsBaseTypeRegressifier () const
 
bool getIsBaseTypeClusterer () const
 
bool getTrainingLoggingEnabled () const
 
bool getTestingLoggingEnabled () const
 
bool enableScaling (const bool useScaling)
 
bool setMaxNumEpochs (const UINT maxNumEpochs)
 
bool setBatchSize (const UINT batchSize)
 
bool setMinNumEpochs (const UINT minNumEpochs)
 
bool setNumRestarts (const UINT numRestarts)
 
bool setMinChange (const Float minChange)
 
bool setLearningRate (const Float learningRate)
 
bool setUseValidationSet (const bool useValidationSet)
 
bool setValidationSetSize (const UINT validationSetSize)
 
bool setRandomiseTrainingOrder (const bool randomiseTrainingOrder)
 
bool setTrainingLoggingEnabled (const bool loggingEnabled)
 
bool setTestingLoggingEnabled (const bool loggingEnabled)
 
bool registerTrainingResultsObserver (Observer< TrainingResult > &observer)
 
bool registerTestResultsObserver (Observer< TestInstanceResult > &observer)
 
bool removeTrainingResultsObserver (const Observer< TrainingResult > &observer)
 
bool removeTestResultsObserver (const Observer< TestInstanceResult > &observer)
 
bool removeAllTrainingObservers ()
 
bool removeAllTestObservers ()
 
bool notifyTrainingResultsObservers (const TrainingResult &data)
 
bool notifyTestResultsObservers (const TestInstanceResult &data)
 
MLBasegetMLBasePointer ()
 
const MLBasegetMLBasePointer () const
 
Vector< TrainingResultgetTrainingResults () const
 
- Public Member Functions inherited from GRTBase
 GRTBase (const std::string &id="")
 
virtual ~GRTBase (void)
 
bool copyGRTBaseVariables (const GRTBase *GRTBase)
 
 GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const )
 
std::string getId () const
 
std::string getLastWarningMessage () const
 
std::string getLastErrorMessage () const
 
std::string getLastInfoMessage () const
 
bool setInfoLoggingEnabled (const bool loggingEnabled)
 
bool setWarningLoggingEnabled (const bool loggingEnabled)
 
bool setErrorLoggingEnabled (const bool loggingEnabled)
 
bool setDebugLoggingEnabled (const bool loggingEnabled)
 
GRTBasegetGRTBasePointer ()
 
const GRTBasegetGRTBasePointer () const
 
Float scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)
 
Float SQR (const Float &x) const
 
- Public Member Functions inherited from Observer< TrainingResult >
virtual void notify (const TrainingResult &data)
 
- Public Member Functions inherited from Observer< TestInstanceResult >
virtual void notify (const TestInstanceResult &data)
 

Protected Member Functions

virtual bool computeBestSplitBestIterativeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override
 
virtual bool computeBestSplitBestRandomSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override
 
bool computeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError)
 
virtual bool saveParametersToFile (std::fstream &file) const override
 
virtual bool loadParametersFromFile (std::fstream &file) override
 
- Protected Member Functions inherited from MLBase
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 

Protected Attributes

UINT featureIndexA
 
UINT featureIndexB
 
UINT featureIndexC
 
- Protected Attributes inherited from DecisionTreeNode
UINT nodeSize
 
VectorFloat classProbabilities
 
- Protected Attributes inherited from Node
std::string nodeType
 
UINT depth
 
UINT nodeID
 
UINT predictedNodeID
 
bool isLeafNode
 
Nodeparent
 
NodeleftChild
 
NoderightChild
 
- Protected Attributes inherited from MLBase
bool trained
 
bool useScaling
 
bool converged
 
DataType inputType
 
DataType outputType
 
BaseType baseType
 
UINT numInputDimensions
 
UINT numOutputDimensions
 
UINT numTrainingIterationsToConverge
 
UINT minNumEpochs
 
UINT maxNumEpochs
 
UINT batchSize
 
UINT validationSetSize
 
UINT numRestarts
 
Float learningRate
 
Float minChange
 
Float rmsTrainingError
 
Float rmsValidationError
 
Float totalSquaredTrainingError
 
Float validationSetAccuracy
 
bool useValidationSet
 
bool randomiseTrainingOrder
 
VectorFloat validationSetPrecision
 
VectorFloat validationSetRecall
 
Random random
 
Vector< TrainingResulttrainingResults
 
TrainingResultsObserverManager trainingResultsObserverManager
 
TestResultsObserverManager testResultsObserverManager
 
TrainingLog trainingLog
 
TestingLog testingLog
 
- Protected Attributes inherited from GRTBase
std::string classId
 Stores the name of the class (e.g., MinDist)
 
DebugLog debugLog
 
ErrorLog errorLog
 
InfoLog infoLog
 
WarningLog warningLog
 

Static Protected Attributes

static RegisterNode< DecisionTreeTripleFeatureNoderegisterModule
 
- Static Protected Attributes inherited from DecisionTreeNode
static RegisterNode< DecisionTreeNoderegisterModule
 

Additional Inherited Members

- Public Types inherited from Node
typedef std::map< std::string, Node *(*)() > StringNodeMap
 
- Public Types inherited from MLBase
enum  BaseType {
  BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER,
  PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT
}
 
- Static Public Member Functions inherited from DecisionTreeNode
static UINT getClassLabelIndexValue (UINT classLabel, const Vector< UINT > &classLabels)
 
- Static Public Member Functions inherited from Node
static NodecreateInstanceFromString (std::string const &nodeType)
 
- Static Public Member Functions inherited from GRTBase
static std::string getGRTVersion (bool returnRevision=true)
 
static std::string getGRTRevison ()
 
- Static Protected Member Functions inherited from Node
static StringNodeMapgetMap ()
 

Detailed Description

This class implements a DecisionTreeTripleFeatureNode, which is a specific type of node used for a DecisionTree.

GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Definition at line 38 of file DecisionTreeTripleFeatureNode.h.

Constructor & Destructor Documentation

DecisionTreeTripleFeatureNode::DecisionTreeTripleFeatureNode ( )

Default Constructor. Sets all the pointers to NULL.

Definition at line 10 of file DecisionTreeTripleFeatureNode.cpp.

DecisionTreeTripleFeatureNode::~DecisionTreeTripleFeatureNode ( )
virtual

Default Destructor. Cleans up any memory.

Definition at line 14 of file DecisionTreeTripleFeatureNode.cpp.

Member Function Documentation

bool DecisionTreeTripleFeatureNode::clear ( )
overridevirtual

This functions cleans up any dynamic memory assigned by the node. It will recursively clear the memory for the left and right child nodes.

Returns
returns true of the node was cleared correctly, false otherwise

Reimplemented from DecisionTreeNode.

Definition at line 25 of file DecisionTreeTripleFeatureNode.cpp.

Node * DecisionTreeTripleFeatureNode::deepCopy ( ) const
overridevirtual

This function returns a deep copy of the DecisionTreeTripleFeatureNode and all it's children. The user is responsible for managing the dynamic data that is returned from this function as a pointer.

Returns
returns a pointer to a deep copy of the DecisionTreeTripleFeatureNode, or NULL if the deep copy was not successful

Reimplemented from DecisionTreeNode.

Definition at line 80 of file DecisionTreeTripleFeatureNode.cpp.

UINT DecisionTreeTripleFeatureNode::getFeatureIndexA ( ) const

This function returns the first featureIndex.

Returns
returns the first featureIndex

Definition at line 114 of file DecisionTreeTripleFeatureNode.cpp.

UINT DecisionTreeTripleFeatureNode::getFeatureIndexB ( ) const

This function returns the second featureIndex.

Returns
returns the second featureIndex

Definition at line 118 of file DecisionTreeTripleFeatureNode.cpp.

UINT DecisionTreeTripleFeatureNode::getFeatureIndexC ( ) const

This function returns the third featureIndex.

Returns
returns the third featureIndex

Definition at line 122 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::getModel ( std::ostream &  stream) const
overridevirtual

This function adds the current model to the formatted stream. This function should be overwritten by the derived class.

Parameters
filea reference to the stream the model will be added to
Returns
returns true if the model was added successfully, false otherwise

Reimplemented from DecisionTreeNode.

Definition at line 49 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::loadParametersFromFile ( std::fstream &  file)
overrideprotectedvirtual

This loads the Decision Tree Node parameters from a file.

Parameters
filea reference to the file the parameters will be loaded from
Returns
returns true if the model was loaded successfully, false otherwise

Reimplemented from DecisionTreeNode.

Definition at line 246 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::predict_ ( VectorFloat x)
overridevirtual

This function predicts if the input is greater than or equal to the nodes threshold. If the input is greater than or equal to the nodes threshold then this function will return true, otherwise it will return false.

NOTE: The threshold and featureIndex should be set first BEFORE this function is called.

Parameters
xthe input Vector that will be used for the prediction
Returns
returns true if the input is greater than or equal to the nodes threshold, false otherwise

Reimplemented from Node.

Definition at line 18 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::print ( ) const
overridevirtual

This functions prints the node data to std::out. It will recursively print all the child nodes.

Returns
returns true if the data was printed correctly, false otherwise

Reimplemented from Node.

Definition at line 37 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::saveParametersToFile ( std::fstream &  file) const
overrideprotectedvirtual

This saves the DecisionTreeNode custom parameters to a file. It will be called automatically by the Node base class if the save function is called.

Parameters
filea reference to the file the parameters will be saved to
Returns
returns true if the model was saved successfully, false otherwise

Reimplemented from DecisionTreeNode.

Definition at line 224 of file DecisionTreeTripleFeatureNode.cpp.

bool DecisionTreeTripleFeatureNode::set ( const UINT  nodeSize,
const UINT  featureIndexA,
const UINT  featureIndexB,
const UINT  featureIndexC,
const VectorFloat classProbabilities 
)

This function sets the Decision Tree Threshold Node.

Parameters
nodeSizesets the node size, this is the number of training samples at that node
featureIndexAsets the first index of the feature that should be used for the threshold spilt
featureIndexBsets the second index of the feature that should be used for the threshold spilt
featureIndexCsets the third index of the feature that should be used for the threshold spilt
classProbabilitiesthe Vector of class probabilities at this node
Returns
returns true if the node was set, false otherwise

Definition at line 126 of file DecisionTreeTripleFeatureNode.cpp.


The documentation for this class was generated from the following files: