GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This class implements a DecisionTreeTripleFeatureNode, which is a specific type of node used for a DecisionTree. More...
#include <DecisionTreeTripleFeatureNode.h>
Public Member Functions | |
DecisionTreeTripleFeatureNode () | |
virtual | ~DecisionTreeTripleFeatureNode () |
virtual bool | predict_ (VectorFloat &x) override |
virtual bool | clear () override |
virtual bool | print () const override |
virtual bool | getModel (std::ostream &stream) const override |
virtual Node * | deepCopy () const override |
UINT | getFeatureIndexA () const |
UINT | getFeatureIndexB () const |
UINT | getFeatureIndexC () const |
bool | set (const UINT nodeSize, const UINT featureIndexA, const UINT featureIndexB, const UINT featureIndexC, const VectorFloat &classProbabilities) |
Public Member Functions inherited from DecisionTreeNode | |
DecisionTreeNode (const std::string id="DecisionTreeNode") | |
DecisionTreeNode (const DecisionTreeNode &rhs)=delete | |
virtual | ~DecisionTreeNode () |
DecisionTreeNode & | operator= (const DecisionTreeNode &rhs)=delete |
virtual bool | predict_ (VectorFloat &x, VectorFloat &classLikelihoods) override |
virtual bool | computeBestSplit (const UINT &trainingMode, const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
UINT | getNodeSize () const |
UINT | getNumClasses () const |
VectorFloat | getClassProbabilities () const |
bool | setLeafNode (const UINT nodeSize, const VectorFloat &classProbabilities) |
bool | setNodeSize (const UINT nodeSize) |
bool | setClassProbabilities (const VectorFloat &classProbabilities) |
Public Member Functions inherited from Node | |
Node (const std::string id="Node") | |
virtual | ~Node () |
virtual bool | computeFeatureWeights (VectorFloat &weights) const |
virtual bool | computeLeafNodeWeights (MatrixFloat &weights) const |
virtual bool | save (std::fstream &file) const override |
virtual bool | load (std::fstream &file) override |
std::string | getNodeType () const |
UINT | getDepth () const |
UINT | getNodeID () const |
UINT | getPredictedNodeID () const |
UINT | getMaxDepth () const |
bool | getIsLeafNode () const |
bool | getHasParent () const |
bool | getHasLeftChild () const |
bool | getHasRightChild () const |
Node * | getParent () const |
Node * | getLeftChild () const |
Node * | getRightChild () const |
bool | initNode (Node *parent, const UINT depth, const UINT nodeID, const bool isLeafNode=false) |
bool | setParent (Node *parent) |
bool | setLeftChild (Node *leftChild) |
bool | setRightChild (Node *rightChild) |
bool | setDepth (const UINT depth) |
bool | setNodeID (const UINT nodeID) |
bool | setIsLeafNode (const bool isLeafNode) |
Node * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
virtual bool | computeBestSplitBestIterativeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override |
virtual bool | computeBestSplitBestRandomSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) override |
bool | computeSplit (const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) |
virtual bool | saveParametersToFile (std::fstream &file) const override |
virtual bool | loadParametersFromFile (std::fstream &file) override |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
UINT | featureIndexA |
UINT | featureIndexB |
UINT | featureIndexC |
Protected Attributes inherited from DecisionTreeNode | |
UINT | nodeSize |
VectorFloat | classProbabilities |
Protected Attributes inherited from Node | |
std::string | nodeType |
UINT | depth |
UINT | nodeID |
UINT | predictedNodeID |
bool | isLeafNode |
Node * | parent |
Node * | leftChild |
Node * | rightChild |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterNode< DecisionTreeTripleFeatureNode > | registerModule |
Static Protected Attributes inherited from DecisionTreeNode | |
static RegisterNode< DecisionTreeNode > | registerModule |
Additional Inherited Members | |
Public Types inherited from Node | |
typedef std::map< std::string, Node *(*)() > | StringNodeMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Public Member Functions inherited from DecisionTreeNode | |
static UINT | getClassLabelIndexValue (UINT classLabel, const Vector< UINT > &classLabels) |
Static Public Member Functions inherited from Node | |
static Node * | createInstanceFromString (std::string const &nodeType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Node | |
static StringNodeMap * | getMap () |
This class implements a DecisionTreeTripleFeatureNode, which is a specific type of node used for a DecisionTree.
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 38 of file DecisionTreeTripleFeatureNode.h.
DecisionTreeTripleFeatureNode::DecisionTreeTripleFeatureNode | ( | ) |
Default Constructor. Sets all the pointers to NULL.
Definition at line 10 of file DecisionTreeTripleFeatureNode.cpp.
|
virtual |
Default Destructor. Cleans up any memory.
Definition at line 14 of file DecisionTreeTripleFeatureNode.cpp.
|
overridevirtual |
This functions cleans up any dynamic memory assigned by the node. It will recursively clear the memory for the left and right child nodes.
Reimplemented from DecisionTreeNode.
Definition at line 25 of file DecisionTreeTripleFeatureNode.cpp.
|
overridevirtual |
This function returns a deep copy of the DecisionTreeTripleFeatureNode and all it's children. The user is responsible for managing the dynamic data that is returned from this function as a pointer.
Reimplemented from DecisionTreeNode.
Definition at line 80 of file DecisionTreeTripleFeatureNode.cpp.
UINT DecisionTreeTripleFeatureNode::getFeatureIndexA | ( | ) | const |
This function returns the first featureIndex.
Definition at line 114 of file DecisionTreeTripleFeatureNode.cpp.
UINT DecisionTreeTripleFeatureNode::getFeatureIndexB | ( | ) | const |
This function returns the second featureIndex.
Definition at line 118 of file DecisionTreeTripleFeatureNode.cpp.
UINT DecisionTreeTripleFeatureNode::getFeatureIndexC | ( | ) | const |
This function returns the third featureIndex.
Definition at line 122 of file DecisionTreeTripleFeatureNode.cpp.
|
overridevirtual |
This function adds the current model to the formatted stream. This function should be overwritten by the derived class.
file | a reference to the stream the model will be added to |
Reimplemented from DecisionTreeNode.
Definition at line 49 of file DecisionTreeTripleFeatureNode.cpp.
|
overrideprotectedvirtual |
This loads the Decision Tree Node parameters from a file.
file | a reference to the file the parameters will be loaded from |
Reimplemented from DecisionTreeNode.
Definition at line 246 of file DecisionTreeTripleFeatureNode.cpp.
|
overridevirtual |
This function predicts if the input is greater than or equal to the nodes threshold. If the input is greater than or equal to the nodes threshold then this function will return true, otherwise it will return false.
NOTE: The threshold and featureIndex should be set first BEFORE this function is called.
x | the input Vector that will be used for the prediction |
Reimplemented from Node.
Definition at line 18 of file DecisionTreeTripleFeatureNode.cpp.
|
overridevirtual |
This functions prints the node data to std::out. It will recursively print all the child nodes.
Reimplemented from Node.
Definition at line 37 of file DecisionTreeTripleFeatureNode.cpp.
|
overrideprotectedvirtual |
This saves the DecisionTreeNode custom parameters to a file. It will be called automatically by the Node base class if the save function is called.
file | a reference to the file the parameters will be saved to |
Reimplemented from DecisionTreeNode.
Definition at line 224 of file DecisionTreeTripleFeatureNode.cpp.
bool DecisionTreeTripleFeatureNode::set | ( | const UINT | nodeSize, |
const UINT | featureIndexA, | ||
const UINT | featureIndexB, | ||
const UINT | featureIndexC, | ||
const VectorFloat & | classProbabilities | ||
) |
This function sets the Decision Tree Threshold Node.
nodeSize | sets the node size, this is the number of training samples at that node |
featureIndexA | sets the first index of the feature that should be used for the threshold spilt |
featureIndexB | sets the second index of the feature that should be used for the threshold spilt |
featureIndexC | sets the third index of the feature that should be used for the threshold spilt |
classProbabilities | the Vector of class probabilities at this node |
Definition at line 126 of file DecisionTreeTripleFeatureNode.cpp.