GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This class runs the Principal Component Analysis (PCA) algorithm, a dimensionality reduction algorithm that projects an [M N] matrix (where M==samples and N==dimensions) onto a new K dimensional subspace, where K is normally much less than N. More...
#include <PrincipalComponentAnalysis.h>
Public Member Functions | |
PrincipalComponentAnalysis () | |
virtual | ~PrincipalComponentAnalysis () |
bool | computeFeatureVector (const MatrixFloat &data, Float maxVariance=0.95, bool normData=false) |
bool | computeFeatureVector (const MatrixFloat &data, UINT numPrincipalComponents, bool normData=false) |
bool | project (const MatrixFloat &data, MatrixFloat &prjData) |
bool | project (const VectorFloat &data, VectorFloat &prjData) |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
bool | getNormData () const |
UINT | getNumInputDimensions () const |
UINT | getNumPrincipalComponents () const |
Float | getMaxVariance () const |
VectorFloat | getMeanVector () const |
VectorFloat | getStdDevVector () const |
VectorFloat | getComponentWeights () const |
VectorFloat | getEigenValues () const |
virtual bool | print (std::string title="") const |
MatrixFloat | getEigenVectors () const |
bool | setModel (const VectorFloat &mean, const MatrixFloat &eigenvectors) |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | print () const |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Types | |
enum | AnalysisMode { MAX_VARIANCE =0, MAX_NUM_PCS } |
Protected Member Functions | |
bool | computeFeatureVector_ (const MatrixFloat &data, UINT analysisMode) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
bool | normData |
UINT | numPrincipalComponents |
Float | maxVariance |
VectorFloat | mean |
VectorFloat | stdDev |
VectorFloat | componentWeights |
VectorFloat | eigenvalues |
Vector< IndexedDouble > | sortedEigenvalues |
MatrixFloat | eigenvectors |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
This class runs the Principal Component Analysis (PCA) algorithm, a dimensionality reduction algorithm that projects an [M N] matrix (where M==samples and N==dimensions) onto a new K dimensional subspace, where K is normally much less than N.
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. This projection or transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component has the highest variance possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding components. Principal components are guaranteed to be independent only if the data set is jointly normally distributed. PCA is sensitive to the relative scaling of the original variables.
The PCA algorithm will automatically mean subtract the input data, and also normalize the data if required. To use this algorithm, the user should first run the computeFeatureVector(...) function to build the PCA feature vector and then run the project(...) function to project new data onto the new principal subspace.
Definition at line 52 of file PrincipalComponentAnalysis.h.
GRT_BEGIN_NAMESPACE PrincipalComponentAnalysis::PrincipalComponentAnalysis | ( | ) |
Default constructor.
Definition at line 31 of file PrincipalComponentAnalysis.cpp.
|
virtual |
Default destructor.
Definition at line 40 of file PrincipalComponentAnalysis.cpp.
bool PrincipalComponentAnalysis::computeFeatureVector | ( | const MatrixFloat & | data, |
Float | maxVariance = 0.95 , |
||
bool | normData = false |
||
) |
Runs the principal component analysis algorithm on the input data and builds the resulting feature vector so new data can be projected onto the principal subspace (using the project function). The number of principal components is automatically computed by selecting the minimum number of components that reach the maxVariance value. This should be a value between [0 1], the default value of 0.95 represents 95% of the variance in the original dataset.
data | a matrix containing the data from which the principal components will be computed. This should be an [M N] matrix, where M==samples and N==dimensions. |
maxVariance | sets the variance that should represented by the top K principal components. This should be a value between [0 1]. Default value=0.95 |
normData | sets if the data will be z-normalized before running the PCA algorithm. Default value=false |
bool PrincipalComponentAnalysis::computeFeatureVector | ( | const MatrixFloat & | data, |
UINT | numPrincipalComponents, | ||
bool | normData = false |
||
) |
Runs the principal component analysis algorithm on the input data and builds the resulting feature vector so new data can be projected onto the principal subspace (using the project function). The number of principal components should be set be the user and must be less than or equal to the number of dimensions in the input data.
data | a matrix containing the data from which the principal components will be computed. This should be an [M N] matrix, where M==samples and N==dimensions |
numPrincipalComponents | sets the number of principal components. This must be a value be less than or equal to the number of dimensions in the input data |
normData | sets if the data will be z-normalized before running the PCA algorithm. Default value=false |
Definition at line 51 of file PrincipalComponentAnalysis.cpp.
|
inline |
Returns the weights for each principal component, these weights sum to 1.
Definition at line 173 of file PrincipalComponentAnalysis.h.
|
inline |
Returns the raw eigen values (these are not sorted).
Definition at line 179 of file PrincipalComponentAnalysis.h.
MatrixFloat PrincipalComponentAnalysis::getEigenVectors | ( | ) | const |
Returns a matrix containing the eigen vectors.
Definition at line 452 of file PrincipalComponentAnalysis.cpp.
|
inline |
Returns the maxVariance parameter, set by the user when the computeFeatureVector was called. returns the maxVariance parameter, set by the user when the computeFeatureVector was called
Definition at line 152 of file PrincipalComponentAnalysis.h.
|
inline |
Returns the mean shift vector, computed during the computeFeatureVector function. New data will be subtracted by this value before it is projected onto the principal subspace.
Definition at line 159 of file PrincipalComponentAnalysis.h.
|
inline |
Returns true if z-normalization is being applied to new data.
Definition at line 134 of file PrincipalComponentAnalysis.h.
|
inline |
Returns the number of input dimensions in the original input data.
Definition at line 140 of file PrincipalComponentAnalysis.h.
|
inline |
Returns the number of principal components that was required to reach the maxVariance parameter.
Definition at line 146 of file PrincipalComponentAnalysis.h.
|
inline |
Returns the standard deviation vector that is used to normalize new data, this is computed during the computeFeatureVector function. This is only used id the normData parameter is true. If true, new data will be z-normalized by this value before it is projected onto the principal subspace.
Definition at line 167 of file PrincipalComponentAnalysis.h.
|
virtual |
This loads a trained PCA model from a file.
file | a reference to the file the model will be loaded from |
Reimplemented from MLBase.
Definition at line 310 of file PrincipalComponentAnalysis.cpp.
|
virtual |
A helper function that prints the PCA info. If the user sets the title string, then this will be written in addition with the PCA data.
Definition at line 427 of file PrincipalComponentAnalysis.cpp.
bool PrincipalComponentAnalysis::project | ( | const MatrixFloat & | data, |
MatrixFloat & | prjData | ||
) |
Projects the input data matrix onto the principal subspace. The new projected data will be stored in the prjData matrix. The computeFeatureVector function should have been called at least once before this function is called. The number of the columns in the data matrix must match the numInputDimensions parameter. The function will return true if the projection was successful, false otherwise.
data | The data that should be projected onto the principal subspace. This should be an [M N] matrix, where N must equal the numInputDimensions value (there are no restrictions on M). |
prjData | A matrix into which the projected data will be stored. This matrix will be resized to [M K], where M is the number of rows in the data matrix and K is the numPrincipalComponents. |
Definition at line 176 of file PrincipalComponentAnalysis.cpp.
bool PrincipalComponentAnalysis::project | ( | const VectorFloat & | data, |
VectorFloat & | prjData | ||
) |
Projects the input data vector onto the principal subspace. The new projected data will be stored in the prjData vector. The computeFeatureVector function should have been called at least once before this function is called. The size of the data vector must match the numInputDimensions parameter. The function will return true if the projection was successful, false otherwise.
data | The data that should be projected onto the principal subspace. This should be an N-dimensional vector, where N must equal the numInputDimensions value. |
prjData | A vector into which the projected data will be stored. This vector will be resized to K, where K is the numPrincipalComponents. |
Definition at line 215 of file PrincipalComponentAnalysis.cpp.
|
virtual |
This saves the trained PCA model to a file.
file | a reference to the file the model will be saved to |
Reimplemented from MLBase.
Definition at line 252 of file PrincipalComponentAnalysis.cpp.