GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Types | |
enum | DistanceMethods { EUCLIDEAN_DISTANCE =0, COSINE_DISTANCE, MANHATTAN_DISTANCE } |
Public Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Public Member Functions | |
KNN (UINT K=10, bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=10.0, bool searchForBestKValue=false, UINT minKSearchValue=1, UINT maxKSearchValue=10) | |
KNN (const KNN &rhs) | |
virtual | ~KNN (void) |
KNN & | operator= (const KNN &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
virtual bool | recomputeNullRejectionThresholds () |
UINT | getK () |
UINT | getDistanceMethod () |
bool | setK (UINT K) |
bool | setMinKSearchValue (UINT minKSearchValue) |
bool | setMaxKSearchValue (UINT maxKSearchValue) |
bool | enableBestKValueSearch (bool searchForBestKValue) |
bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
bool | setDistanceMethod (UINT distanceMethod) |
Public Member Functions inherited from Classifier | |
Classifier (const std::string &classifierId="") | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
virtual bool | computeAccuracy (const ClassificationData &data, Float &accuracy) |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
Float | getTrainingSetAccuracy () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (const UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (const bool useNullRejection) |
virtual bool | setNullRejectionThresholds (const VectorFloat &newRejectionThresholds) |
bool | getTimeseriesCompatible () const |
Classifier * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id)) | |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Classifier | |
static Classifier * | create (const std::string &id) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
bool | train_ (const ClassificationData &trainingData, const UINT K) |
bool | predict (const VectorFloat &inputVector, const UINT K) |
bool | loadLegacyModelFromFile (std::fstream &file) |
Float | computeEuclideanDistance (const VectorFloat &a, const VectorFloat &b) |
Float | computeCosineDistance (const VectorFloat &a, const VectorFloat &b) |
Float | computeManhattanDistance (const VectorFloat &a, const VectorFloat &b) |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
UINT | K |
UINT | distanceMethod |
| |
bool | searchForBestKValue |
| |
UINT | minKSearchValue |
| |
UINT | maxKSearchValue |
| |
ClassificationData | trainingData |
| |
VectorFloat | trainingMu |
| |
VectorFloat | trainingSigma |
| |
Protected Attributes inherited from Classifier | |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
Float | trainingSetAccuracy |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
KNN::KNN | ( | UINT | K = 10 , |
bool | useScaling = false , |
||
bool | useNullRejection = false , |
||
Float | nullRejectionCoeff = 10.0 , |
||
bool | searchForBestKValue = false , |
||
UINT | minKSearchValue = 1 , |
||
UINT | maxKSearchValue = 10 |
||
) |
Default Constructor
K | the number of neigbors the algorithm will us to perform a classification. Default value is K = 10 |
useScaling | sets if the training and prediction data should be scaled to a specific range. Default value is useScaling = false |
useNullRejection | sets if null rejection will be used for the realtime prediction. If useNullRejection is set to true then the predictedClassLabel will be set to 0 (which is the default null label) if the distance between the inputVector and the top K datum is greater than the null rejection threshold for the top predicted class. The null rejection threshold is computed for each class during the training phase. Default value is useNullRejection = false |
nullRejectionCoeff | sets the null rejection coefficient, this is a multipler controlling the null rejection threshold for each class. This will only be used if the useNullRejection parameter is set to true. Default value is nullRejectionCoeff = 10.0 |
searchForBestKValue | sets if the training algorithm will search for the best K value. Default value is searchForBestKValue = false |
minKSearchValue | sets the minimum K value to use when searching for the best K value. Default value is minKSearchValue = 1 |
maxKSearchValue | sets the maximum K value to use when searching for the best K value. Default value is maxKSearchValue = 1 |
KNN::KNN | ( | const KNN & | rhs | ) |
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to a KNN instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another KNN instance |
Reimplemented from Classifier.
bool KNN::enableBestKValueSearch | ( | bool | searchForBestKValue | ) |
Sets if the best K value should be searched for. If true then the best K value will be searched during the training phase. If false then the KNN algorithm will be trained with the K value set by the user.
|
inline |
|
static |
|
inline |
|
virtual |
This loads a trained KNN model from a file. This overrides the load function in the Classifier base class.
file | a reference to the file the KNN model will be loaded from |
Reimplemented from MLBase.
|
protected |
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
|
virtual |
This recomputes the null rejection thresholds for each of the classes in the KNN model. This will be called automatically if the setGamma(Float gamma) function is called. The KNN model needs to be trained first before this function can be called.
Reimplemented from Classifier.
|
virtual |
This saves the trained KNN model to a file. This overrides the save function in the Classifier base class.
file | a reference to the file the KNN model will be saved to |
Reimplemented from MLBase.
bool KNN::setDistanceMethod | ( | UINT | distanceMethod | ) |
Sets the current distance method being used to compute the neighest neighbours. This should be called prior to training a KNN model. See the enum DistanceMethods for a list of possible distance methods.
bool KNN::setK | ( | UINT | K | ) |
bool KNN::setMaxKSearchValue | ( | UINT | maxKSearchValue | ) |
bool KNN::setMinKSearchValue | ( | UINT | minKSearchValue | ) |
|
virtual |
Sets the nullRejectionCoeff parameter. The nullRejectionCoeff parameter is a multipler controlling the null rejection threshold for each class. This function will also recompute the null rejection thresholds.
Reimplemented from Classifier.
|
virtual |
This trains the KNN model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.