GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
KNN Member List

This is the complete list of members for KNN, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
bestDistance (defined in Classifier)Classifierprotected
classDistances (defined in Classifier)Classifierprotected
classIdGRTBaseprotected
Classifier(const std::string &classifierId="")Classifier
CLASSIFIER enum value (defined in MLBase)MLBase
classifierMode (defined in Classifier)Classifierprotected
ClassifierModes enum name (defined in Classifier)Classifier
classLabels (defined in Classifier)Classifierprotected
classLikelihoods (defined in Classifier)Classifierprotected
clear()KNNvirtual
CLUSTERER enum value (defined in MLBase)MLBase
computeAccuracy(const ClassificationData &data, Float &accuracy)Classifiervirtual
computeCosineDistance(const VectorFloat &a, const VectorFloat &b) (defined in KNN)KNNprotected
computeEuclideanDistance(const VectorFloat &a, const VectorFloat &b) (defined in KNN)KNNprotected
computeManhattanDistance(const VectorFloat &a, const VectorFloat &b) (defined in KNN)KNNprotected
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in MLBase)MLBaseprotected
copyBaseVariables(const Classifier *classifier)Classifier
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
COSINE_DISTANCE enum value (defined in KNN)KNN
create(const std::string &id)Classifierstatic
create() const Classifier
debugLog (defined in GRTBase)GRTBaseprotected
deepCopy() const Classifier
deepCopyFrom(const Classifier *classifier)KNNvirtual
distanceMethodKNNprotected
DistanceMethods enum name (defined in KNN)KNN
enableBestKValueSearch(bool searchForBestKValue)KNN
enableNullRejection(const bool useNullRejection)Classifier
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
EUCLIDEAN_DISTANCE enum value (defined in KNN)KNN
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
getBaseClassifier() const Classifier
getBatchSize() const MLBase
getBestDistance() const Classifier
getClassDistances() const Classifier
getClassifierPointer() const Classifier
getClassifierType() const Classifier
getClassLabelIndexValue(const UINT classLabel) const Classifier
getClassLabels() const Classifier
getClassLikelihoods() const Classifier
getConverged() const MLBase
getDistanceMethod()KNNinline
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getId()KNNstatic
Classifier::getId() const GRTBase
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getK()KNNinline
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap()Classifierinlineprotectedstatic
getMaximumLikelihood() const Classifier
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getNullRejectionCoeff() const Classifier
getNullRejectionEnabled() const Classifier
getNullRejectionThresholds() const Classifier
getNumClasses() const Classifiervirtual
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPhase() const Classifier
getPredictedClassLabel() const Classifier
getRandomiseTrainingOrder() const MLBase
getRanges() const Classifier
getRegisteredClassifiers()Classifierstatic
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getSupportsNullRejection() const Classifier
getTestingLoggingEnabled() const MLBase
getTimeseriesCompatible() const Classifierinline
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingLoggingEnabled() const MLBase
getTrainingResults() const MLBase
getTrainingSetAccuracy() const Classifier
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create instead.", Classifier *createNewInstance() const ) (defined in Classifier)Classifier
GRT_DEPRECATED_MSG("createInstanceFromString is deprecated, use create instead.", static Classifier *createInstanceFromString(const std::string &id)) (defined in Classifier)Classifier
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
inputType (defined in MLBase)MLBaseprotected
K (defined in KNN)KNNprotected
KNN(UINT K=10, bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=10.0, bool searchForBestKValue=false, UINT minKSearchValue=1, UINT maxKSearchValue=10)KNN
KNN(const KNN &rhs)KNN
learningRate (defined in MLBase)MLBaseprotected
load(std::fstream &file)KNNvirtual
Classifier::load(const std::string &filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)Classifierprotected
loadLegacyModelFromFile(std::fstream &file)KNNprotected
MANHATTAN_DISTANCE enum value (defined in KNN)KNN
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxKSearchValueKNNprotected
maxLikelihood (defined in Classifier)Classifierprotected
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minKSearchValueKNNprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
nullRejectionCoeff (defined in Classifier)Classifierprotected
nullRejectionThresholds (defined in Classifier)Classifierprotected
numClasses (defined in Classifier)Classifierprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator=(const KNN &rhs)KNN
outputType (defined in MLBase)MLBaseprotected
phase (defined in Classifier)Classifierprotected
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(const VectorFloat &inputVector, const UINT K) (defined in KNN)KNNprotected
Classifier::predict(VectorFloat inputVector)MLBasevirtual
Classifier::predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)KNNvirtual
Classifier::predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictedClassLabel (defined in Classifier)Classifierprotected
print() const MLBasevirtual
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
ranges (defined in Classifier)Classifierprotected
recomputeNullRejectionThresholds()KNNvirtual
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()Classifiervirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(std::fstream &file) const KNNvirtual
Classifier::save(const std::string &filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const Classifierprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
searchForBestKValueKNNprotected
setBatchSize(const UINT batchSize)MLBase
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setDistanceMethod(UINT distanceMethod)KNN
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setK(UINT K)KNN
setLearningRate(const Float learningRate)MLBase
setMaxKSearchValue(UINT maxKSearchValue)KNN
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinKSearchValue(UINT minKSearchValue)KNN
setMinNumEpochs(const UINT minNumEpochs)MLBase
setNullRejectionCoeff(Float nullRejectionCoeff)KNNvirtual
setNullRejectionThresholds(const VectorFloat &newRejectionThresholds)Classifiervirtual
setNumRestarts(const UINT numRestarts)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
STANDARD_CLASSIFIER_MODE enum value (defined in Classifier)Classifier
StringClassifierMap typedefClassifier
supportsNullRejection (defined in Classifier)Classifierprotected
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
TIMESERIES_CLASSIFIER_MODE enum value (defined in Classifier)Classifier
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)KNNvirtual
train_(const ClassificationData &trainingData, const UINT K) (defined in KNN)KNNprotected
Classifier::train_(RegressionData &trainingData)MLBasevirtual
Classifier::train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
Classifier::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
Classifier::train_(ClassificationDataStream &trainingData)MLBasevirtual
Classifier::train_(UnlabelledData &trainingData)MLBasevirtual
Classifier::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingDataKNNprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingMuKNNprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
trainingSetAccuracy (defined in Classifier)Classifierprotected
trainingSigmaKNNprotected
useNullRejection (defined in Classifier)Classifierprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~Classifier(void)Classifiervirtual
~GRTBase(void)GRTBasevirtual
~KNN(void)KNNvirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual