GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
LogisticRegression (const bool useScaling=true, const Float learningRate=0.01, const Float minChange=1.0e-5, const UINT batchSize=1, const UINT maxNumEpochs=500, const UINT minNumEpochs=1) | |
LogisticRegression (const LogisticRegression &rhs) | |
virtual | ~LogisticRegression (void) |
LogisticRegression & | operator= (const LogisticRegression &rhs) |
virtual bool | deepCopyFrom (const Regressifier *regressifier) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
UINT | getMaxNumIterations () const |
bool | setMaxNumIterations (UINT maxNumIterations) |
Public Member Functions inherited from Regressifier | |
Regressifier (const std::string &id="") | |
virtual | ~Regressifier (void) |
bool | copyBaseVariables (const Regressifier *regressifier) |
virtual bool | reset () override |
virtual bool | clear () override |
VectorFloat | getRegressionData () const |
Vector< MinMax > | getInputRanges () const |
Vector< MinMax > | getOutputRanges () const |
Regressifier * | deepCopy () const |
const Regressifier & | getBaseRegressifier () const |
Regressifier * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create() instead.", Regressifier *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString(id) is deprecated, use create(id) instead.", static Regressifier *createInstanceFromString(const std::string &id)) | |
GRT_DEPRECATED_MSG ("getRegressifierType is deprecated, use getId() instead", std::string getRegressifierType() const ) | |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Regressifier | |
static Vector< std::string > | getRegisteredRegressifiers () |
static Regressifier * | create (const std::string &id) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
Float | sigmoid (const Float x) const |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Regressifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
Float | w0 |
The bias. | |
VectorFloat | w |
The weights vector. | |
Protected Attributes inherited from Regressifier | |
std::string | regressifierType |
VectorFloat | regressionData |
Vector< MinMax > | inputVectorRanges |
Vector< MinMax > | targetVectorRanges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Regressifier | |
typedef std::map< std::string, Regressifier *(*)() > | StringRegressifierMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Protected Member Functions inherited from Regressifier | |
static StringRegressifierMap * | getMap () |
Definition at line 38 of file LogisticRegression.h.
LogisticRegression::LogisticRegression | ( | const bool | useScaling = true , |
const Float | learningRate = 0.01 , |
||
const Float | minChange = 1.0e-5 , |
||
const UINT | batchSize = 1 , |
||
const UINT | maxNumEpochs = 500 , |
||
const UINT | minNumEpochs = 1 |
||
) |
Default Constructor
useScaling | sets if the training and real-time data should be scaled between [0 1] |
learningRate | sets the rate at which the model's weights are updated during training |
minChange | sets the minimum change needed during updates before training is stopped |
batchSize | sets the number of training samples that will be used in one batch to update the weights |
maxNumEpochs | sets the maximum number of epochs allowed during training (one epoch is one full iteration over the training data) |
minNumEpochs | sets the minimum number of epochs that must be completed before the training algorithm can stop |
Definition at line 33 of file LogisticRegression.cpp.
LogisticRegression::LogisticRegression | ( | const LogisticRegression & | rhs | ) |
Copy Constructor
rhs | copies the settings and model (if trained) from the rhs instance to this instance |
Definition at line 43 of file LogisticRegression.cpp.
|
virtual |
Default Destructor
Definition at line 48 of file LogisticRegression.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Regressifier pointer (which should be pointing to an Logistic Regression instance) into this instance
regressifier | a pointer to the Regressifier Base Class, this should be pointing to another Logistic Regression instance |
Reimplemented from Regressifier.
Definition at line 63 of file LogisticRegression.cpp.
|
static |
Gets a string that represents the LinearRegression class.
Definition at line 28 of file LogisticRegression.cpp.
UINT LogisticRegression::getMaxNumIterations | ( | ) | const |
Gets the current maxNumIterations value, this is the maximum number of iterations that can be run during the training phase.
Definition at line 401 of file LogisticRegression.cpp.
|
virtual |
This loads a trained Logistic Regression model from a file. This overrides the load function in the Logistic Regression base class.
file | a reference to the file the Logistic Regression model will be loaded from |
Reimplemented from MLBase.
Definition at line 345 of file LogisticRegression.cpp.
|
protected |
Read the ranges if needed
Definition at line 413 of file LogisticRegression.cpp.
LogisticRegression & LogisticRegression::operator= | ( | const LogisticRegression & | rhs | ) |
Defines how the data from the rhs LogisticRegression should be copied to this LogisticRegression
rhs | another instance of a LogisticRegression |
Definition at line 52 of file LogisticRegression.cpp.
|
virtual |
This performs the regression by mapping the inputVector using the current Logistic Regression model. This overrides the predict function in the Regressifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
Definition at line 282 of file LogisticRegression.cpp.
|
virtual |
This saves the trained Logistic Regression model to a file. This overrides the save function in the ML base class.
file | a reference to the file the Logistic Regression model will be saved to |
Reimplemented from MLBase.
Definition at line 316 of file LogisticRegression.cpp.
bool LogisticRegression::setMaxNumIterations | ( | UINT | maxNumIterations | ) |
Sets the maximum number of iterations that can be run during the training phase. The maxNumIterations value must be greater than zero.
maxNumIterations | the maximum number of iterations value, must be greater than zero |
Definition at line 405 of file LogisticRegression.cpp.
|
virtual |
This trains the Logistic Regression model, using the labelled regression data. This overrides the train function in the Regression base class.
trainingData | the training data that will be used to train the regression model |
Reimplemented from MLBase.
Definition at line 79 of file LogisticRegression.cpp.