GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This class implements a basic Regression Tree. More...
#include <RegressionTree.h>
Public Member Functions | |
RegressionTree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const Tree::TrainingMode trainingMode=Tree::BEST_ITERATIVE_SPILT, const bool useScaling=false, const Float minRMSErrorPerNode=0.01) | |
RegressionTree (const RegressionTree &rhs) | |
virtual | ~RegressionTree (void) |
RegressionTree & | operator= (const RegressionTree &rhs) |
virtual bool | deepCopyFrom (const Regressifier *regressifier) override |
virtual bool | train_ (RegressionData &trainingData) override |
virtual bool | predict_ (VectorFloat &inputVector) override |
virtual bool | clear () override |
virtual bool | print () const override |
virtual bool | save (std::fstream &file) const override |
virtual bool | load (std::fstream &file) override |
RegressionTreeNode * | deepCopyTree () const |
const RegressionTreeNode * | getTree () const |
Float | getMinRMSErrorPerNode () const |
Tree::TrainingMode | getTrainingMode () const |
UINT | getNumSplittingSteps () const |
UINT | getMinNumSamplesPerNode () const |
UINT | getMaxDepth () const |
UINT | getPredictedNodeID () const |
bool | getRemoveFeaturesAtEachSpilt () const |
bool | setTrainingMode (const Tree::TrainingMode trainingMode) |
bool | setNumSplittingSteps (const UINT numSplittingSteps) |
bool | setMinNumSamplesPerNode (const UINT minNumSamplesPerNode) |
bool | setMaxDepth (const UINT maxDepth) |
bool | setRemoveFeaturesAtEachSpilt (const bool removeFeaturesAtEachSpilt) |
bool | setMinRMSErrorPerNode (const Float minRMSErrorPerNode) |
Public Member Functions inherited from Regressifier | |
Regressifier (const std::string &id="") | |
virtual | ~Regressifier (void) |
bool | copyBaseVariables (const Regressifier *regressifier) |
virtual bool | reset () override |
VectorFloat | getRegressionData () const |
Vector< MinMax > | getInputRanges () const |
Vector< MinMax > | getOutputRanges () const |
Regressifier * | deepCopy () const |
const Regressifier & | getBaseRegressifier () const |
Regressifier * | create () const |
GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create() instead.", Regressifier *createNewInstance() const ) | |
GRT_DEPRECATED_MSG ("createInstanceFromString(id) is deprecated, use create(id) instead.", static Regressifier *createInstanceFromString(const std::string &id)) | |
GRT_DEPRECATED_MSG ("getRegressifierType is deprecated, use getId() instead", std::string getRegressifierType() const ) | |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static std::string | getId () |
Static Public Member Functions inherited from Regressifier | |
static Vector< std::string > | getRegisteredRegressifiers () |
static Regressifier * | create (const std::string &id) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
RegressionTreeNode * | buildTree (const RegressionData &trainingData, RegressionTreeNode *parent, Vector< UINT > features, UINT nodeID) |
bool | computeBestSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeBestSpiltBestIterativeSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeNodeRegressionData (const RegressionData &trainingData, VectorFloat ®ressionData) |
Protected Member Functions inherited from Regressifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
Node * | tree |
<Tell the compiler we are using the base class predict method to stop hidden virtual function warnings | |
UINT | minNumSamplesPerNode |
UINT | maxDepth |
UINT | numSplittingSteps |
bool | removeFeaturesAtEachSpilt |
Tree::TrainingMode | trainingMode |
Float | minRMSErrorPerNode |
Protected Attributes inherited from Regressifier | |
std::string | regressifierType |
VectorFloat | regressionData |
Vector< MinMax > | inputVectorRanges |
Vector< MinMax > | targetVectorRanges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Regressifier | |
typedef std::map< std::string, Regressifier *(*)() > | StringRegressifierMap |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Protected Member Functions inherited from Regressifier | |
static StringRegressifierMap * | getMap () |
This class implements a basic Regression Tree.
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 39 of file RegressionTree.h.
RegressionTree::RegressionTree | ( | const UINT | numSplittingSteps = 100 , |
const UINT | minNumSamplesPerNode = 5 , |
||
const UINT | maxDepth = 10 , |
||
const bool | removeFeaturesAtEachSpilt = false , |
||
const Tree::TrainingMode | trainingMode = Tree::BEST_ITERATIVE_SPILT , |
||
const bool | useScaling = false , |
||
const Float | minRMSErrorPerNode = 0.01 |
||
) |
Default Constructor
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. Default value = 100 |
minNumSamplesPerNode | sets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5 |
maxDepth | sets the maximum depth of the tree. Default value = 10 |
removeFeaturesAtEachSpilt | sets if a feature is removed at each spilt so it can not be used again. Default value = false |
trainingMode | sets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT |
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
minRMSErrorPerNode | sets the minimum RMS error that allowed per node, if the RMS error is below that, the node will become a leafNode. Default value = 0.01 |
Definition at line 36 of file RegressionTree.cpp.
RegressionTree::RegressionTree | ( | const RegressionTree & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 48 of file RegressionTree.cpp.
|
virtual |
Default Destructor
Definition at line 54 of file RegressionTree.cpp.
|
overridevirtual |
This overrides the clear function in the Regressifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Regressifier.
Definition at line 189 of file RegressionTree.cpp.
|
overridevirtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Regressifier pointer (which should be pointing to an RegressionTree instance) into this instance
regressifier | a pointer to the Regressifier Base Class, this should be pointing to another RegressionTree instance |
Reimplemented from Regressifier.
Definition at line 82 of file RegressionTree.cpp.
RegressionTreeNode * RegressionTree::deepCopyTree | ( | ) | const |
Deep copies the regression tree, returning a pointer to the new regression tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.
Definition at line 340 of file RegressionTree.cpp.
|
static |
Gets a string that represents the RegressionTree class.
Definition at line 31 of file RegressionTree.cpp.
UINT RegressionTree::getMaxDepth | ( | ) | const |
Gets the maximum depth of the tree.
Definition at line 369 of file RegressionTree.cpp.
UINT RegressionTree::getMinNumSamplesPerNode | ( | ) | const |
Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.
Definition at line 365 of file RegressionTree.cpp.
Float RegressionTree::getMinRMSErrorPerNode | ( | ) | const |
Gets the minimum root mean squared error value that needs to be exceeded for the tree to continue growing at a specific node. If the RMS error is below this value then the node will be made into a leaf node.
Definition at line 353 of file RegressionTree.cpp.
UINT RegressionTree::getNumSplittingSteps | ( | ) | const |
Gets the number of steps that will be used to search for the best spliting value for each node.
If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.
Definition at line 361 of file RegressionTree.cpp.
UINT RegressionTree::getPredictedNodeID | ( | ) | const |
This function returns the predictedNodeID, this is ID of the leaf node that was reached during the last prediction call
Definition at line 373 of file RegressionTree.cpp.
bool RegressionTree::getRemoveFeaturesAtEachSpilt | ( | ) | const |
Gets if a feature is removed at each spilt so it can not be used again.
Definition at line 382 of file RegressionTree.cpp.
Tree::TrainingMode RegressionTree::getTrainingMode | ( | ) | const |
Gets the current training mode. This will be one of the TrainingModes enums.
Definition at line 357 of file RegressionTree.cpp.
const RegressionTreeNode * RegressionTree::getTree | ( | ) | const |
Gets a pointer to the regression tree. NULL will be returned if the decision tree model has not be trained.
Definition at line 349 of file RegressionTree.cpp.
|
overridevirtual |
This loads a trained RegressionTree model from a file. This overrides the load function in the Regressifier base class.
file | a reference to the file the RegressionTree model will be loaded from |
Reimplemented from MLBase.
Definition at line 244 of file RegressionTree.cpp.
RegressionTree & RegressionTree::operator= | ( | const RegressionTree & | rhs | ) |
Defines how the data from the rhs RegressionTree should be copied to this RegressionTree
rhs | another instance of a RegressionTree |
Definition at line 59 of file RegressionTree.cpp.
|
overridevirtual |
This predicts the class of the inputVector. This overrides the predict function in the Regressifier base class.
inputVector | the input Vector to predict |
Reimplemented from MLBase.
Definition at line 158 of file RegressionTree.cpp.
|
overridevirtual |
Prints the tree to std::cout.
Reimplemented from MLBase.
Definition at line 203 of file RegressionTree.cpp.
|
overridevirtual |
This saves the trained RegressionTree model to a file. This overrides the save function in the Regressifier base class.
file | a reference to the file the RegressionTree model will be saved to |
Reimplemented from MLBase.
Definition at line 209 of file RegressionTree.cpp.
bool RegressionTree::setMaxDepth | ( | const UINT | maxDepth | ) |
Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.
maxDepth | the maximum depth of the tree |
Definition at line 413 of file RegressionTree.cpp.
bool RegressionTree::setMinNumSamplesPerNode | ( | const UINT | minNumSamplesPerNode | ) |
Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.
minNumSamplesPerNode | the minimum number of samples that are allowed per node |
Definition at line 404 of file RegressionTree.cpp.
bool RegressionTree::setMinRMSErrorPerNode | ( | const Float | minRMSErrorPerNode | ) |
Sets the minimum RMS error that needs to be exceeded for the tree to continue growing at a specific node.
minRMSErrorPerNode | sets the minRMSErrorPerNode parameter |
Definition at line 427 of file RegressionTree.cpp.
bool RegressionTree::setNumSplittingSteps | ( | const UINT | numSplittingSteps | ) |
Sets the number of steps that will be used to search for the best spliting value for each node.
If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.
A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. |
Definition at line 395 of file RegressionTree.cpp.
bool RegressionTree::setRemoveFeaturesAtEachSpilt | ( | const bool | removeFeaturesAtEachSpilt | ) |
Sets if a feature is removed at each spilt so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.
removeFeaturesAtEachSpilt | if true, then each feature is removed at each spilt so it can not be used again |
Definition at line 422 of file RegressionTree.cpp.
bool RegressionTree::setTrainingMode | ( | const Tree::TrainingMode | trainingMode | ) |
Sets the training mode, this should be one of the TrainingModes enums.
trainingMode | the new trainingMode, this should be one of the TrainingModes enums |
Definition at line 386 of file RegressionTree.cpp.
|
overridevirtual |
This trains the RegressionTree model, using the labelled regression data. This overrides the train function in the Regressifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 111 of file RegressionTree.cpp.