GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
RegressionTree Class Reference

This class implements a basic Regression Tree. More...

#include <RegressionTree.h>

Inheritance diagram for RegressionTree:
Regressifier MLBase GRTBase Observer< TrainingResult > Observer< TestInstanceResult >

Public Member Functions

 RegressionTree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const Tree::TrainingMode trainingMode=Tree::BEST_ITERATIVE_SPILT, const bool useScaling=false, const Float minRMSErrorPerNode=0.01)
 
 RegressionTree (const RegressionTree &rhs)
 
virtual ~RegressionTree (void)
 
RegressionTreeoperator= (const RegressionTree &rhs)
 
virtual bool deepCopyFrom (const Regressifier *regressifier) override
 
virtual bool train_ (RegressionData &trainingData) override
 
virtual bool predict_ (VectorFloat &inputVector) override
 
virtual bool clear () override
 
virtual bool print () const override
 
virtual bool save (std::fstream &file) const override
 
virtual bool load (std::fstream &file) override
 
RegressionTreeNodedeepCopyTree () const
 
const RegressionTreeNodegetTree () const
 
Float getMinRMSErrorPerNode () const
 
Tree::TrainingMode getTrainingMode () const
 
UINT getNumSplittingSteps () const
 
UINT getMinNumSamplesPerNode () const
 
UINT getMaxDepth () const
 
UINT getPredictedNodeID () const
 
bool getRemoveFeaturesAtEachSpilt () const
 
bool setTrainingMode (const Tree::TrainingMode trainingMode)
 
bool setNumSplittingSteps (const UINT numSplittingSteps)
 
bool setMinNumSamplesPerNode (const UINT minNumSamplesPerNode)
 
bool setMaxDepth (const UINT maxDepth)
 
bool setRemoveFeaturesAtEachSpilt (const bool removeFeaturesAtEachSpilt)
 
bool setMinRMSErrorPerNode (const Float minRMSErrorPerNode)
 
- Public Member Functions inherited from Regressifier
 Regressifier (const std::string &id="")
 
virtual ~Regressifier (void)
 
bool copyBaseVariables (const Regressifier *regressifier)
 
virtual bool reset () override
 
VectorFloat getRegressionData () const
 
Vector< MinMaxgetInputRanges () const
 
Vector< MinMaxgetOutputRanges () const
 
RegressifierdeepCopy () const
 
const RegressifiergetBaseRegressifier () const
 
Regressifiercreate () const
 
 GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create() instead.", Regressifier *createNewInstance() const )
 
 GRT_DEPRECATED_MSG ("createInstanceFromString(id) is deprecated, use create(id) instead.", static Regressifier *createInstanceFromString(const std::string &id))
 
 GRT_DEPRECATED_MSG ("getRegressifierType is deprecated, use getId() instead", std::string getRegressifierType() const )
 
- Public Member Functions inherited from MLBase
 MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)
 
virtual ~MLBase (void)
 
bool copyMLBaseVariables (const MLBase *mlBase)
 
virtual bool train (ClassificationData trainingData)
 
virtual bool train_ (ClassificationData &trainingData)
 
virtual bool train (RegressionData trainingData)
 
virtual bool train (RegressionData trainingData, RegressionData validationData)
 
virtual bool train_ (RegressionData &trainingData, RegressionData &validationData)
 
virtual bool train (TimeSeriesClassificationData trainingData)
 
virtual bool train_ (TimeSeriesClassificationData &trainingData)
 
virtual bool train (ClassificationDataStream trainingData)
 
virtual bool train_ (ClassificationDataStream &trainingData)
 
virtual bool train (UnlabelledData trainingData)
 
virtual bool train_ (UnlabelledData &trainingData)
 
virtual bool train (MatrixFloat data)
 
virtual bool train_ (MatrixFloat &data)
 
virtual bool predict (VectorFloat inputVector)
 
virtual bool predict (MatrixFloat inputMatrix)
 
virtual bool predict_ (MatrixFloat &inputMatrix)
 
virtual bool map (VectorFloat inputVector)
 
virtual bool map_ (VectorFloat &inputVector)
 
virtual bool save (const std::string &filename) const
 
virtual bool load (const std::string &filename)
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))
 
virtual bool getModel (std::ostream &stream) const
 
virtual std::string getModelAsString () const
 
DataType getInputType () const
 
DataType getOutputType () const
 
BaseType getType () const
 
UINT getNumInputFeatures () const
 
UINT getNumInputDimensions () const
 
UINT getNumOutputDimensions () const
 
UINT getMinNumEpochs () const
 
UINT getMaxNumEpochs () const
 
UINT getBatchSize () const
 
UINT getNumRestarts () const
 
UINT getValidationSetSize () const
 
UINT getNumTrainingIterationsToConverge () const
 
Float getMinChange () const
 
Float getLearningRate () const
 
Float getRMSTrainingError () const
 
 GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )
 
Float getTotalSquaredTrainingError () const
 
Float getRMSValidationError () const
 
Float getValidationSetAccuracy () const
 
VectorFloat getValidationSetPrecision () const
 
VectorFloat getValidationSetRecall () const
 
bool getUseValidationSet () const
 
bool getRandomiseTrainingOrder () const
 
bool getTrained () const
 
 GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )
 
bool getConverged () const
 
bool getScalingEnabled () const
 
bool getIsBaseTypeClassifier () const
 
bool getIsBaseTypeRegressifier () const
 
bool getIsBaseTypeClusterer () const
 
bool getTrainingLoggingEnabled () const
 
bool getTestingLoggingEnabled () const
 
bool enableScaling (const bool useScaling)
 
bool setMaxNumEpochs (const UINT maxNumEpochs)
 
bool setBatchSize (const UINT batchSize)
 
bool setMinNumEpochs (const UINT minNumEpochs)
 
bool setNumRestarts (const UINT numRestarts)
 
bool setMinChange (const Float minChange)
 
bool setLearningRate (const Float learningRate)
 
bool setUseValidationSet (const bool useValidationSet)
 
bool setValidationSetSize (const UINT validationSetSize)
 
bool setRandomiseTrainingOrder (const bool randomiseTrainingOrder)
 
bool setTrainingLoggingEnabled (const bool loggingEnabled)
 
bool setTestingLoggingEnabled (const bool loggingEnabled)
 
bool registerTrainingResultsObserver (Observer< TrainingResult > &observer)
 
bool registerTestResultsObserver (Observer< TestInstanceResult > &observer)
 
bool removeTrainingResultsObserver (const Observer< TrainingResult > &observer)
 
bool removeTestResultsObserver (const Observer< TestInstanceResult > &observer)
 
bool removeAllTrainingObservers ()
 
bool removeAllTestObservers ()
 
bool notifyTrainingResultsObservers (const TrainingResult &data)
 
bool notifyTestResultsObservers (const TestInstanceResult &data)
 
MLBasegetMLBasePointer ()
 
const MLBasegetMLBasePointer () const
 
Vector< TrainingResultgetTrainingResults () const
 
- Public Member Functions inherited from GRTBase
 GRTBase (const std::string &id="")
 
virtual ~GRTBase (void)
 
bool copyGRTBaseVariables (const GRTBase *GRTBase)
 
 GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const )
 
std::string getId () const
 
std::string getLastWarningMessage () const
 
std::string getLastErrorMessage () const
 
std::string getLastInfoMessage () const
 
bool setInfoLoggingEnabled (const bool loggingEnabled)
 
bool setWarningLoggingEnabled (const bool loggingEnabled)
 
bool setErrorLoggingEnabled (const bool loggingEnabled)
 
bool setDebugLoggingEnabled (const bool loggingEnabled)
 
GRTBasegetGRTBasePointer ()
 
const GRTBasegetGRTBasePointer () const
 
Float scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)
 
Float SQR (const Float &x) const
 
- Public Member Functions inherited from Observer< TrainingResult >
virtual void notify (const TrainingResult &data)
 
- Public Member Functions inherited from Observer< TestInstanceResult >
virtual void notify (const TestInstanceResult &data)
 

Static Public Member Functions

static std::string getId ()
 
- Static Public Member Functions inherited from Regressifier
static Vector< std::string > getRegisteredRegressifiers ()
 
static Regressifiercreate (const std::string &id)
 
- Static Public Member Functions inherited from GRTBase
static std::string getGRTVersion (bool returnRevision=true)
 
static std::string getGRTRevison ()
 

Protected Member Functions

RegressionTreeNodebuildTree (const RegressionData &trainingData, RegressionTreeNode *parent, Vector< UINT > features, UINT nodeID)
 
bool computeBestSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError)
 
bool computeBestSpiltBestIterativeSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError)
 
bool computeNodeRegressionData (const RegressionData &trainingData, VectorFloat &regressionData)
 
- Protected Member Functions inherited from Regressifier
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 
- Protected Member Functions inherited from MLBase
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 

Protected Attributes

Nodetree
 <Tell the compiler we are using the base class predict method to stop hidden virtual function warnings
 
UINT minNumSamplesPerNode
 
UINT maxDepth
 
UINT numSplittingSteps
 
bool removeFeaturesAtEachSpilt
 
Tree::TrainingMode trainingMode
 
Float minRMSErrorPerNode
 
- Protected Attributes inherited from Regressifier
std::string regressifierType
 
VectorFloat regressionData
 
Vector< MinMaxinputVectorRanges
 
Vector< MinMaxtargetVectorRanges
 
- Protected Attributes inherited from MLBase
bool trained
 
bool useScaling
 
bool converged
 
DataType inputType
 
DataType outputType
 
BaseType baseType
 
UINT numInputDimensions
 
UINT numOutputDimensions
 
UINT numTrainingIterationsToConverge
 
UINT minNumEpochs
 
UINT maxNumEpochs
 
UINT batchSize
 
UINT validationSetSize
 
UINT numRestarts
 
Float learningRate
 
Float minChange
 
Float rmsTrainingError
 
Float rmsValidationError
 
Float totalSquaredTrainingError
 
Float validationSetAccuracy
 
bool useValidationSet
 
bool randomiseTrainingOrder
 
VectorFloat validationSetPrecision
 
VectorFloat validationSetRecall
 
Random random
 
Vector< TrainingResulttrainingResults
 
TrainingResultsObserverManager trainingResultsObserverManager
 
TestResultsObserverManager testResultsObserverManager
 
TrainingLog trainingLog
 
TestingLog testingLog
 
- Protected Attributes inherited from GRTBase
std::string classId
 Stores the name of the class (e.g., MinDist)
 
DebugLog debugLog
 
ErrorLog errorLog
 
InfoLog infoLog
 
WarningLog warningLog
 

Additional Inherited Members

- Public Types inherited from Regressifier
typedef std::map< std::string, Regressifier *(*)() > StringRegressifierMap
 
- Public Types inherited from MLBase
enum  BaseType {
  BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER,
  PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT
}
 
- Static Protected Member Functions inherited from Regressifier
static StringRegressifierMapgetMap ()
 

Detailed Description

This class implements a basic Regression Tree.

GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Remarks
This algorithm is still under development.

Definition at line 39 of file RegressionTree.h.

Constructor & Destructor Documentation

RegressionTree::RegressionTree ( const UINT  numSplittingSteps = 100,
const UINT  minNumSamplesPerNode = 5,
const UINT  maxDepth = 10,
const bool  removeFeaturesAtEachSpilt = false,
const Tree::TrainingMode  trainingMode = Tree::BEST_ITERATIVE_SPILT,
const bool  useScaling = false,
const Float  minRMSErrorPerNode = 0.01 
)

Default Constructor

Parameters
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node. Default value = 100
minNumSamplesPerNodesets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5
maxDepthsets the maximum depth of the tree. Default value = 10
removeFeaturesAtEachSpiltsets if a feature is removed at each spilt so it can not be used again. Default value = false
trainingModesets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT
useScalingsets if the training and real-time data should be scaled between [0 1]. Default value = false
minRMSErrorPerNodesets the minimum RMS error that allowed per node, if the RMS error is below that, the node will become a leafNode. Default value = 0.01

Definition at line 36 of file RegressionTree.cpp.

RegressionTree::RegressionTree ( const RegressionTree rhs)

Defines the copy constructor.

Parameters
rhsthe instance from which all the data will be copied into this instance

Definition at line 48 of file RegressionTree.cpp.

RegressionTree::~RegressionTree ( void  )
virtual

Default Destructor

Definition at line 54 of file RegressionTree.cpp.

Member Function Documentation

bool RegressionTree::clear ( )
overridevirtual

This overrides the clear function in the Regressifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.

Returns
returns true if the module was cleared succesfully, false otherwise

Reimplemented from Regressifier.

Definition at line 189 of file RegressionTree.cpp.

bool RegressionTree::deepCopyFrom ( const Regressifier regressifier)
overridevirtual

This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Regressifier pointer (which should be pointing to an RegressionTree instance) into this instance

Parameters
regressifiera pointer to the Regressifier Base Class, this should be pointing to another RegressionTree instance
Returns
returns true if the clone was successfull, false otherwise

Reimplemented from Regressifier.

Definition at line 82 of file RegressionTree.cpp.

RegressionTreeNode * RegressionTree::deepCopyTree ( ) const

Deep copies the regression tree, returning a pointer to the new regression tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.

Returns
returns a pointer to a deep copy of the regression tree

Definition at line 340 of file RegressionTree.cpp.

std::string RegressionTree::getId ( )
static

Gets a string that represents the RegressionTree class.

Returns
returns a string containing the ID of this class

Definition at line 31 of file RegressionTree.cpp.

UINT RegressionTree::getMaxDepth ( ) const

Gets the maximum depth of the tree.

Returns
returns the maximum depth of the tree

Definition at line 369 of file RegressionTree.cpp.

UINT RegressionTree::getMinNumSamplesPerNode ( ) const

Gets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node.

Returns
returns the minimum number of samples that are allowed per node

Definition at line 365 of file RegressionTree.cpp.

Float RegressionTree::getMinRMSErrorPerNode ( ) const

Gets the minimum root mean squared error value that needs to be exceeded for the tree to continue growing at a specific node. If the RMS error is below this value then the node will be made into a leaf node.

Returns
returns the minimum RMS error per node

Definition at line 353 of file RegressionTree.cpp.

UINT RegressionTree::getNumSplittingSteps ( ) const

Gets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

Returns
returns the number of steps that will be used to search for the best spliting value for each node

Definition at line 361 of file RegressionTree.cpp.

UINT RegressionTree::getPredictedNodeID ( ) const

This function returns the predictedNodeID, this is ID of the leaf node that was reached during the last prediction call

Returns
returns the predictedNodeID, this will be zero if the tree does not exist or predict has not been called

Definition at line 373 of file RegressionTree.cpp.

bool RegressionTree::getRemoveFeaturesAtEachSpilt ( ) const

Gets if a feature is removed at each spilt so it can not be used again.

Returns
returns true if a feature is removed at each spilt so it can not be used again, false otherwise

Definition at line 382 of file RegressionTree.cpp.

Tree::TrainingMode RegressionTree::getTrainingMode ( ) const

Gets the current training mode. This will be one of the TrainingModes enums.

Returns
returns the training mode

Definition at line 357 of file RegressionTree.cpp.

const RegressionTreeNode * RegressionTree::getTree ( ) const

Gets a pointer to the regression tree. NULL will be returned if the decision tree model has not be trained.

Returns
returns a const pointer to the regression tree

Definition at line 349 of file RegressionTree.cpp.

bool RegressionTree::load ( std::fstream &  file)
overridevirtual

This loads a trained RegressionTree model from a file. This overrides the load function in the Regressifier base class.

Parameters
filea reference to the file the RegressionTree model will be loaded from
Returns
returns true if the model was loaded successfully, false otherwise

Reimplemented from MLBase.

Definition at line 244 of file RegressionTree.cpp.

RegressionTree & RegressionTree::operator= ( const RegressionTree rhs)

Defines how the data from the rhs RegressionTree should be copied to this RegressionTree

Parameters
rhsanother instance of a RegressionTree
Returns
returns a pointer to this instance of the RegressionTree

Definition at line 59 of file RegressionTree.cpp.

bool RegressionTree::predict_ ( VectorFloat inputVector)
overridevirtual

This predicts the class of the inputVector. This overrides the predict function in the Regressifier base class.

Parameters
inputVectorthe input Vector to predict
Returns
returns true if the prediction was performed, false otherwise

Reimplemented from MLBase.

Definition at line 158 of file RegressionTree.cpp.

bool RegressionTree::print ( ) const
overridevirtual

Prints the tree to std::cout.

Returns
returns true if the model was printed

Reimplemented from MLBase.

Definition at line 203 of file RegressionTree.cpp.

bool RegressionTree::save ( std::fstream &  file) const
overridevirtual

This saves the trained RegressionTree model to a file. This overrides the save function in the Regressifier base class.

Parameters
filea reference to the file the RegressionTree model will be saved to
Returns
returns true if the model was saved successfully, false otherwise

Reimplemented from MLBase.

Definition at line 209 of file RegressionTree.cpp.

bool RegressionTree::setMaxDepth ( const UINT  maxDepth)

Sets the maximum depth of the tree, any node that reaches this depth will automatically become a leaf node. Value must be larger than zero.

Parameters
maxDepththe maximum depth of the tree
Returns
returns true if the parameter was set, false otherwise

Definition at line 413 of file RegressionTree.cpp.

bool RegressionTree::setMinNumSamplesPerNode ( const UINT  minNumSamplesPerNode)

Sets the minimum number of samples that are allowed per node, if the number of samples at a node is below this value then the node will automatically become a leaf node. Value must be larger than zero.

Parameters
minNumSamplesPerNodethe minimum number of samples that are allowed per node
Returns
returns true if the parameter was set, false otherwise

Definition at line 404 of file RegressionTree.cpp.

bool RegressionTree::setMinRMSErrorPerNode ( const Float  minRMSErrorPerNode)

Sets the minimum RMS error that needs to be exceeded for the tree to continue growing at a specific node.

Parameters
minRMSErrorPerNodesets the minRMSErrorPerNode parameter
Returns
returns true if the parameter was updated

Definition at line 427 of file RegressionTree.cpp.

bool RegressionTree::setNumSplittingSteps ( const UINT  numSplittingSteps)

Sets the number of steps that will be used to search for the best spliting value for each node.

If the trainingMode is set to BEST_ITERATIVE_SPILT, then the numSplittingSteps controls how many iterative steps there will be per feature. If the trainingMode is set to BEST_RANDOM_SPLIT, then the numSplittingSteps controls how many random searches there will be per feature.

A higher value will increase the chances of building a better model, but will take longer to train the model. Value must be larger than zero.

Parameters
numSplittingStepssets the number of steps that will be used to search for the best spliting value for each node.
Returns
returns true if the parameter was set, false otherwise

Definition at line 395 of file RegressionTree.cpp.

bool RegressionTree::setRemoveFeaturesAtEachSpilt ( const bool  removeFeaturesAtEachSpilt)

Sets if a feature is removed at each spilt so it can not be used again. If true then the best feature selected at each node will be removed so it can not be used in any children of that node. If false, then the feature that provides the best spilt at each node will be used, regardless of how many times it has been used again.

Parameters
removeFeaturesAtEachSpiltif true, then each feature is removed at each spilt so it can not be used again
Returns
returns true if the parameter was set, false otherwise

Definition at line 422 of file RegressionTree.cpp.

bool RegressionTree::setTrainingMode ( const Tree::TrainingMode  trainingMode)

Sets the training mode, this should be one of the TrainingModes enums.

Parameters
trainingModethe new trainingMode, this should be one of the TrainingModes enums
Returns
returns true if the trainingMode was set successfully, false otherwise

Definition at line 386 of file RegressionTree.cpp.

bool RegressionTree::train_ ( RegressionData trainingData)
overridevirtual

This trains the RegressionTree model, using the labelled regression data. This overrides the train function in the Regressifier base class.

Parameters
trainingDataa reference to the training data
Returns
returns true if the RegressionTree model was trained, false otherwise

Reimplemented from MLBase.

Definition at line 111 of file RegressionTree.cpp.


The documentation for this class was generated from the following files: