GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
PostProcessing Class Reference

This is the main base class that all GRT PostProcessing algorithms should inherit from. A large number of the functions in this class are virtual and simply return false as these functions must be overwridden by the inheriting class. More...

#include <PostProcessing.h>

Inheritance diagram for PostProcessing:
MLBase GRTBase Observer< TrainingResult > Observer< TestInstanceResult > ClassLabelChangeFilter ClassLabelFilter ClassLabelTimeoutFilter RegisterPostProcessingModule< T > RegisterPostProcessingModule< ClassLabelChangeFilter > RegisterPostProcessingModule< ClassLabelFilter > RegisterPostProcessingModule< ClassLabelTimeoutFilter >

Public Types

enum  PostprocessingInputModes { INPUT_MODE_NOT_SET =0, INPUT_MODE_PREDICTED_CLASS_LABEL, INPUT_MODE_CLASS_LIKELIHOODS }
 
enum  PostprocessingOutputModes { OUTPUT_MODE_NOT_SET =0, OUTPUT_MODE_PREDICTED_CLASS_LABEL, OUTPUT_MODE_CLASS_LIKELIHOODS }
 
typedef std::map< std::string, PostProcessing *(*)() > StringPostProcessingMap
 
- Public Types inherited from MLBase
enum  BaseType {
  BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER,
  PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT
}
 

Public Member Functions

 PostProcessing (const std::string &id="")
 
virtual ~PostProcessing (void)
 
virtual bool deepCopyFrom (const PostProcessing *postProcessing)
 
bool copyBaseVariables (const PostProcessing *postProcessingModule)
 
virtual bool process (const VectorFloat &inputVector)
 
UINT getPostProcessingInputMode () const
 
UINT getPostProcessingOutputMode () const
 
bool getInitialized () const
 
bool getIsPostProcessingInputModePredictedClassLabel () const
 
bool getIsPostProcessingInputModeClassLikelihoods () const
 
bool getIsPostProcessingOutputModePredictedClassLabel () const
 
bool getIsPostProcessingOutputModeClassLikelihoods () const
 
VectorFloat getProcessedData () const
 
PostProcessingcreate () const
 
 GRT_DEPRECATED_MSG ("createNewInstance is deprecated, use create instead.", PostProcessing *createNewInstance() const )
 
 GRT_DEPRECATED_MSG ("createInstanceFromString is deprecated, use create instead.", static PostProcessing *createInstanceFromString(const std::string &id))
 
 GRT_DEPRECATED_MSG ("getPostProcessingType is deprecated, use getId() instead", std::string getPostProcessingType() const )
 
- Public Member Functions inherited from MLBase
 MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)
 
virtual ~MLBase (void)
 
bool copyMLBaseVariables (const MLBase *mlBase)
 
virtual bool train (ClassificationData trainingData)
 
virtual bool train_ (ClassificationData &trainingData)
 
virtual bool train (RegressionData trainingData)
 
virtual bool train_ (RegressionData &trainingData)
 
virtual bool train (RegressionData trainingData, RegressionData validationData)
 
virtual bool train_ (RegressionData &trainingData, RegressionData &validationData)
 
virtual bool train (TimeSeriesClassificationData trainingData)
 
virtual bool train_ (TimeSeriesClassificationData &trainingData)
 
virtual bool train (ClassificationDataStream trainingData)
 
virtual bool train_ (ClassificationDataStream &trainingData)
 
virtual bool train (UnlabelledData trainingData)
 
virtual bool train_ (UnlabelledData &trainingData)
 
virtual bool train (MatrixFloat data)
 
virtual bool train_ (MatrixFloat &data)
 
virtual bool predict (VectorFloat inputVector)
 
virtual bool predict_ (VectorFloat &inputVector)
 
virtual bool predict (MatrixFloat inputMatrix)
 
virtual bool predict_ (MatrixFloat &inputMatrix)
 
virtual bool map (VectorFloat inputVector)
 
virtual bool map_ (VectorFloat &inputVector)
 
virtual bool reset ()
 
virtual bool clear ()
 
virtual bool print () const
 
virtual bool save (const std::string &filename) const
 
virtual bool load (const std::string &filename)
 
virtual bool save (std::fstream &file) const
 
virtual bool load (std::fstream &file)
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )
 
 GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))
 
 GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))
 
virtual bool getModel (std::ostream &stream) const
 
virtual std::string getModelAsString () const
 
DataType getInputType () const
 
DataType getOutputType () const
 
BaseType getType () const
 
UINT getNumInputFeatures () const
 
UINT getNumInputDimensions () const
 
UINT getNumOutputDimensions () const
 
UINT getMinNumEpochs () const
 
UINT getMaxNumEpochs () const
 
UINT getBatchSize () const
 
UINT getNumRestarts () const
 
UINT getValidationSetSize () const
 
UINT getNumTrainingIterationsToConverge () const
 
Float getMinChange () const
 
Float getLearningRate () const
 
Float getRMSTrainingError () const
 
 GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )
 
Float getTotalSquaredTrainingError () const
 
Float getRMSValidationError () const
 
Float getValidationSetAccuracy () const
 
VectorFloat getValidationSetPrecision () const
 
VectorFloat getValidationSetRecall () const
 
bool getUseValidationSet () const
 
bool getRandomiseTrainingOrder () const
 
bool getTrained () const
 
 GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )
 
bool getConverged () const
 
bool getScalingEnabled () const
 
bool getIsBaseTypeClassifier () const
 
bool getIsBaseTypeRegressifier () const
 
bool getIsBaseTypeClusterer () const
 
bool getTrainingLoggingEnabled () const
 
bool getTestingLoggingEnabled () const
 
bool enableScaling (const bool useScaling)
 
bool setMaxNumEpochs (const UINT maxNumEpochs)
 
bool setBatchSize (const UINT batchSize)
 
bool setMinNumEpochs (const UINT minNumEpochs)
 
bool setNumRestarts (const UINT numRestarts)
 
bool setMinChange (const Float minChange)
 
bool setLearningRate (const Float learningRate)
 
bool setUseValidationSet (const bool useValidationSet)
 
bool setValidationSetSize (const UINT validationSetSize)
 
bool setRandomiseTrainingOrder (const bool randomiseTrainingOrder)
 
bool setTrainingLoggingEnabled (const bool loggingEnabled)
 
bool setTestingLoggingEnabled (const bool loggingEnabled)
 
bool registerTrainingResultsObserver (Observer< TrainingResult > &observer)
 
bool registerTestResultsObserver (Observer< TestInstanceResult > &observer)
 
bool removeTrainingResultsObserver (const Observer< TrainingResult > &observer)
 
bool removeTestResultsObserver (const Observer< TestInstanceResult > &observer)
 
bool removeAllTrainingObservers ()
 
bool removeAllTestObservers ()
 
bool notifyTrainingResultsObservers (const TrainingResult &data)
 
bool notifyTestResultsObservers (const TestInstanceResult &data)
 
MLBasegetMLBasePointer ()
 
const MLBasegetMLBasePointer () const
 
Vector< TrainingResultgetTrainingResults () const
 
- Public Member Functions inherited from GRTBase
 GRTBase (const std::string &id="")
 
virtual ~GRTBase (void)
 
bool copyGRTBaseVariables (const GRTBase *GRTBase)
 
 GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const )
 
std::string getId () const
 
std::string getLastWarningMessage () const
 
std::string getLastErrorMessage () const
 
std::string getLastInfoMessage () const
 
bool setInfoLoggingEnabled (const bool loggingEnabled)
 
bool setWarningLoggingEnabled (const bool loggingEnabled)
 
bool setErrorLoggingEnabled (const bool loggingEnabled)
 
bool setDebugLoggingEnabled (const bool loggingEnabled)
 
GRTBasegetGRTBasePointer ()
 
const GRTBasegetGRTBasePointer () const
 
Float scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)
 
Float SQR (const Float &x) const
 
- Public Member Functions inherited from Observer< TrainingResult >
virtual void notify (const TrainingResult &data)
 
- Public Member Functions inherited from Observer< TestInstanceResult >
virtual void notify (const TestInstanceResult &data)
 

Static Public Member Functions

static PostProcessingcreate (const std::string &postProcessingType)
 
- Static Public Member Functions inherited from GRTBase
static std::string getGRTVersion (bool returnRevision=true)
 
static std::string getGRTRevison ()
 

Protected Member Functions

bool init ()
 
bool savePostProcessingSettingsToFile (std::fstream &file) const
 
bool loadPostProcessingSettingsFromFile (std::fstream &file)
 
- Protected Member Functions inherited from MLBase
bool saveBaseSettingsToFile (std::fstream &file) const
 
bool loadBaseSettingsFromFile (std::fstream &file)
 

Static Protected Member Functions

static StringPostProcessingMapgetMap ()
 

Protected Attributes

std::string postProcessingType
 
bool initialized
 
UINT postProcessingInputMode
 
UINT postProcessingOutputMode
 
VectorFloat processedData
 
- Protected Attributes inherited from MLBase
bool trained
 
bool useScaling
 
bool converged
 
DataType inputType
 
DataType outputType
 
BaseType baseType
 
UINT numInputDimensions
 
UINT numOutputDimensions
 
UINT numTrainingIterationsToConverge
 
UINT minNumEpochs
 
UINT maxNumEpochs
 
UINT batchSize
 
UINT validationSetSize
 
UINT numRestarts
 
Float learningRate
 
Float minChange
 
Float rmsTrainingError
 
Float rmsValidationError
 
Float totalSquaredTrainingError
 
Float validationSetAccuracy
 
bool useValidationSet
 
bool randomiseTrainingOrder
 
VectorFloat validationSetPrecision
 
VectorFloat validationSetRecall
 
Random random
 
Vector< TrainingResulttrainingResults
 
TrainingResultsObserverManager trainingResultsObserverManager
 
TestResultsObserverManager testResultsObserverManager
 
TrainingLog trainingLog
 
TestingLog testingLog
 
- Protected Attributes inherited from GRTBase
std::string classId
 Stores the name of the class (e.g., MinDist)
 
DebugLog debugLog
 
ErrorLog errorLog
 
InfoLog infoLog
 
WarningLog warningLog
 

Detailed Description

This is the main base class that all GRT PostProcessing algorithms should inherit from. A large number of the functions in this class are virtual and simply return false as these functions must be overwridden by the inheriting class.

GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Definition at line 37 of file PostProcessing.h.

Member Typedef Documentation

typedef std::map< std::string, PostProcessing*(*)() > PostProcessing::StringPostProcessingMap

This typedef defines a map between a string and a PostProcessing pointer.

Definition at line 119 of file PostProcessing.h.

Constructor & Destructor Documentation

PostProcessing::PostProcessing ( const std::string &  id = "")

Default Constructor

Definition at line 45 of file PostProcessing.cpp.

PostProcessing::~PostProcessing ( void  )
virtual

Default Destructor

Definition at line 55 of file PostProcessing.cpp.

Member Function Documentation

bool PostProcessing::copyBaseVariables ( const PostProcessing postProcessingModule)

This copies the PostProcessing variables from postProcessingModule to the instance that calls the function.

Parameters
postProcessingModulea pointer to a post processing module from which the values will be copied
Returns
returns true if the copy was successfull, false otherwise

Definition at line 62 of file PostProcessing.cpp.

PostProcessing * PostProcessing::create ( const std::string &  postProcessingType)
static

This static function will dynamically create a new PostProcessing instance from a string.

Parameters
postProcessingTypethe name of the PostProcessing class you want to dynamically create
Returns
a pointer to the new PostProcessing instance that was created

Definition at line 32 of file PostProcessing.cpp.

PostProcessing * PostProcessing::create ( ) const

This static function will dynamically create a new PostProcessing instance based on the type of this instance

Definition at line 41 of file PostProcessing.cpp.

virtual bool PostProcessing::deepCopyFrom ( const PostProcessing postProcessing)
inlinevirtual

This is the base deepCopyFrom function for the PostProcessing modules. This function should be overwritten by the derived class.

Parameters
postProcessinga pointer to the PostProcessing base class, this should be pointing to another instance of a matching derived class
Returns
returns true if the deep copy was successfull, false otherwise (the PostProcessing base class will always return flase)

Reimplemented in ClassLabelTimeoutFilter, ClassLabelFilter, and ClassLabelChangeFilter.

Definition at line 56 of file PostProcessing.h.

bool PostProcessing::getInitialized ( ) const

Returns true if the post processing module has been initialized correctly.

Returns
returns true if the post processing module has been initialized succesfully, false otherwise

Definition at line 160 of file PostProcessing.cpp.

bool PostProcessing::getIsPostProcessingInputModeClassLikelihoods ( ) const
Returns
returns true if input mode is INPUT_MODE_CLASS_LIKELIHOODS, false otherwise

Definition at line 168 of file PostProcessing.cpp.

bool PostProcessing::getIsPostProcessingInputModePredictedClassLabel ( ) const
Returns
returns true if input mode is INPUT_MODE_PREDICTED_CLASS_LABEL, false otherwise

Definition at line 164 of file PostProcessing.cpp.

bool PostProcessing::getIsPostProcessingOutputModeClassLikelihoods ( ) const
Returns
returns true if input mode is OUTPUT_MODE_CLASS_LIKELIHOODS, false otherwise

Definition at line 176 of file PostProcessing.cpp.

bool PostProcessing::getIsPostProcessingOutputModePredictedClassLabel ( ) const
Returns
returns true if input mode is OUTPUT_MODE_PREDICTED_CLASS_LABEL, false otherwise

Definition at line 172 of file PostProcessing.cpp.

UINT PostProcessing::getPostProcessingInputMode ( ) const
Returns
returns the post processing input mode, this will be one of the PostprocessingInputModes enums

Definition at line 152 of file PostProcessing.cpp.

UINT PostProcessing::getPostProcessingOutputMode ( ) const
Returns
returns the post processing output mode, this will be one of the PostprocessingOutputModes enums

Definition at line 156 of file PostProcessing.cpp.

VectorFloat PostProcessing::getProcessedData ( ) const
Returns
returns a VectorFloat containing the most recent processed data

Definition at line 180 of file PostProcessing.cpp.

bool PostProcessing::init ( )
protected

Initializes the base postprocessing module, this will resize the processedData vector and get the instance ready for processing new data. The inheriting class must first initialize the module before calling this function.

Returns
returns true if the module was initialized, false otherwise

Definition at line 86 of file PostProcessing.cpp.

bool PostProcessing::loadPostProcessingSettingsFromFile ( std::fstream &  file)
protected

Loads the core postprocessing settings from a file.

Returns
returns true if the base settings were loaded, false otherwise

Definition at line 117 of file PostProcessing.cpp.

virtual bool PostProcessing::process ( const VectorFloat inputVector)
inlinevirtual

This is the main processing interface for all the post processing modules and should be overwritten by the inheriting class.

Parameters
inputVectora vector containing the data that should be processed
Returns
returns true if the post processing was successfull, false otherwise

Reimplemented in ClassLabelTimeoutFilter, ClassLabelFilter, and ClassLabelChangeFilter.

Definition at line 72 of file PostProcessing.h.

bool PostProcessing::savePostProcessingSettingsToFile ( std::fstream &  file) const
protected

Saves the core postprocessing settings to a file.

Returns
returns true if the base settings were saved, false otherwise

Definition at line 103 of file PostProcessing.cpp.


The documentation for this class was generated from the following files: