GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <BernoulliRBM.h>
Classes | |
struct | BatchIndexs |
Public Member Functions | |
BernoulliRBM (const UINT numHiddenUnits=100, const UINT maxNumEpochs=1000, const Float learningRate=1, const Float learningRateUpdate=1, const Float momentum=0.5, const bool useScaling=true, const bool randomiseTrainingOrder=true) | |
bool | predict_ (VectorFloat &inputData) |
bool | predict_ (VectorFloat &inputData, VectorFloat &outputData) |
bool | predict_ (const MatrixFloat &inputData, MatrixFloat &outputData, const UINT rowIndex) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
bool | reconstruct (const VectorFloat &input, VectorFloat &output) |
virtual bool | print () const |
bool | getRandomizeWeightsForTraining () const |
UINT | getNumVisibleUnits () const |
UINT | getNumHiddenUnits () const |
VectorFloat | getOutputData () const |
const MatrixFloat & | getWeights () const |
bool | setNumHiddenUnits (const UINT numHiddenUnits) |
bool | setMomentum (const Float momentum) |
bool | setLearningRateUpdate (const Float learningRateUpdate) |
bool | setRandomizeWeightsForTraining (const bool randomizeWeightsForTraining) |
bool | setBatchSize (const UINT batchSize) |
bool | setBatchStepSize (const UINT batchStepSize) |
Public Member Functions inherited from MLBase | |
MLBase (const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (RegressionData trainingData, RegressionData validationData) |
virtual bool | train_ (RegressionData &trainingData, RegressionData &validationData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string &filename) const |
virtual bool | load (const std::string &filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
BaseType | getType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getBatchSize () const |
UINT | getNumRestarts () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRMSTrainingError () const |
GRT_DEPRECATED_MSG ("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | |
Float | getTotalSquaredTrainingError () const |
Float | getRMSValidationError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
GRT_DEPRECATED_MSG ("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | |
bool | getConverged () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | getTrainingLoggingEnabled () const |
bool | getTestingLoggingEnabled () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setBatchSize (const UINT batchSize) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setNumRestarts (const UINT numRestarts) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | setTestingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (const std::string &id="") | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
GRT_DEPRECATED_MSG ("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | |
std::string | getId () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
bool | setDebugLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
Float | SQR (const Float &x) const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Types | |
typedef struct BatchIndexs | BatchIndexs |
Protected Member Functions | |
bool | loadLegacyModelFromFile (std::fstream &file) |
<Tell the compiler we are using the base class predict method to stop hidden virtual function warnings | |
Float | sigmoidRandom (const Float &x) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
bool | randomizeWeightsForTraining |
UINT | numVisibleUnits |
UINT | numHiddenUnits |
UINT | batchSize |
UINT | batchStepSize |
Float | momentum |
Float | learningRateUpdate |
MatrixFloat | weightsMatrix |
VectorFloat | visibleLayerBias |
VectorFloat | hiddenLayerBias |
VectorFloat | ph_mean |
VectorFloat | ph_sample |
VectorFloat | nv_means |
VectorFloat | nv_samples |
VectorFloat | nh_means |
VectorFloat | nh_samples |
VectorFloat | outputData |
Vector< MinMax > | ranges |
Random | rand |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
bool | converged |
DataType | inputType |
DataType | outputType |
BaseType | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | batchSize |
UINT | validationSetSize |
UINT | numRestarts |
Float | learningRate |
Float | minChange |
Float | rmsTrainingError |
Float | rmsValidationError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
Vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
TrainingLog | trainingLog |
TestingLog | testingLog |
Protected Attributes inherited from GRTBase | |
std::string | classId |
Stores the name of the class (e.g., MinDist) | |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from MLBase | |
enum | BaseType { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER, PRE_PROCSSING, POST_PROCESSING, FEATURE_EXTRACTION, CONTEXT } |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 42 of file BernoulliRBM.h.
|
virtual |
This function will completely clear the RBM instance, removing any trained model and setting all the base variables to their default values.
Reimplemented from MLBase.
Definition at line 399 of file BernoulliRBM.cpp.
|
virtual |
This loads a trained model from a file.
file | a reference to the file the model will be loaded from |
Reimplemented from MLBase.
Definition at line 481 of file BernoulliRBM.cpp.
|
virtual |
This is the prediction interface for referenced VectorFloat data, it calls the main prediction interface below. The RBM should be trained first before you use this function. The size of the input data must match the number of visible units.
inputData | a reference to the input data that will be used to train the RBM model |
Reimplemented from MLBase.
Definition at line 28 of file BernoulliRBM.cpp.
bool BernoulliRBM::predict_ | ( | VectorFloat & | inputData, |
VectorFloat & | outputData | ||
) |
This is the main prediction interface for referenced VectorFloat data. It propagates the input data up through the RBM. The RBM should be trained first before you use this function. The size of the input data must match the number of visible units.
inputData | a reference to the input data that will be used to train the RBM model |
outputData | a reference to the output data that will be used to train the RBM model |
Definition at line 37 of file BernoulliRBM.cpp.
bool BernoulliRBM::predict_ | ( | const MatrixFloat & | inputData, |
MatrixFloat & | outputData, | ||
const UINT | rowIndex | ||
) |
This function is used during the training phase to propagate the input data up through the RBM, this gives P( h_j = 1 | input ) If you are using this function then you should make sure the RBM is trained first before you use it. The size of the matrices must match the size of the model.
inputData | a reference to the input data |
outputData | a reference to the output data that will store the results of the propagation |
rowIndex | the row in the inputData/outputData that should be used for the propagation |
Definition at line 74 of file BernoulliRBM.cpp.
|
virtual |
This is the main print interface for all the GRT machine learning algorithms. This should be overwritten by the derived class. It will print the model and settings to the display log.
Reimplemented from MLBase.
Definition at line 629 of file BernoulliRBM.cpp.
|
virtual |
This function will reset the model (i.e. set all values back to default settings). If you want to completely clear the model (i.e. clear any learned weights or values) then you should use the clear function.
Reimplemented from MLBase.
Definition at line 391 of file BernoulliRBM.cpp.
|
virtual |
This saves the trained model to a file.
file | a reference to the file the model will be saved to |
Reimplemented from MLBase.
Definition at line 422 of file BernoulliRBM.cpp.
|
virtual |
This is the main training interface for referenced MatrixFloat data.
trainingData | a reference to the training data that will be used to train the RBM model |
Reimplemented from MLBase.
Definition at line 108 of file BernoulliRBM.cpp.