GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <FeatureExtraction.h>
Public Types | |
typedef std::map< std::string, FeatureExtraction *(*)() > | StringFeatureExtractionMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Public Member Functions | |
FeatureExtraction () | |
virtual | ~FeatureExtraction () |
virtual bool | deepCopyFrom (const FeatureExtraction *rhs) |
bool | copyBaseVariables (const FeatureExtraction *featureExtractionModule) |
virtual bool | computeFeatures (const VectorFloat &inputVector) |
virtual bool | computeFeatures (const MatrixFloat &inputMatrix) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
std::string | getFeatureExtractionType () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
bool | getFeatureDataReady () const |
const VectorFloat & | getFeatureVector () const |
const MatrixFloat & | getFeatureMatrix () const |
FeatureExtraction * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Static Public Member Functions | |
static FeatureExtraction * | createInstanceFromString (const std::string &featureExtractionType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions | |
bool | init () |
bool | saveFeatureExtractionSettingsToFile (std::fstream &file) const |
bool | loadFeatureExtractionSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Static Protected Member Functions | |
static StringFeatureExtractionMap * | getMap () |
Protected Attributes | |
std::string | featureExtractionType |
bool | initialized |
bool | featureDataReady |
VectorFloat | featureVector |
MatrixFloat | featureMatrix |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 38 of file FeatureExtraction.h.
typedef std::map< std::string, FeatureExtraction*(*)() > FeatureExtraction::StringFeatureExtractionMap |
Defines a map between a string (which will contain the name of the featureExtraction module, such as FFT) and a function returns a new instance of that featureExtraction
Definition at line 170 of file FeatureExtraction.h.
FeatureExtraction::FeatureExtraction | ( | ) |
Default FeatureExtraction Constructor
Definition at line 41 of file FeatureExtraction.cpp.
|
virtual |
Default FeatureExtraction Destructor
Definition at line 55 of file FeatureExtraction.cpp.
|
virtual |
This function clears any previous setup.
Reimplemented from MLBase.
Reimplemented in FFT, RBMQuantizer, KMeansQuantizer, and SOMQuantizer.
Definition at line 107 of file FeatureExtraction.cpp.
|
inlinevirtual |
This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This function should be overwritten by the derived class.
inputVector | the inputVector that should be processed |
Reimplemented in FFT, ZeroCrossingCounter, RBMQuantizer, KMeansQuantizer, SOMQuantizer, MovementTrajectoryFeatures, FFTFeatures, KMeansFeatures, MovementIndex, TimeseriesBuffer, and TimeDomainFeatures.
Definition at line 74 of file FeatureExtraction.h.
|
inlinevirtual |
This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This function should be overwritten by the derived class.
inputMatrix | the inputVector that should be processed |
Reimplemented in FFT.
Definition at line 83 of file FeatureExtraction.h.
bool FeatureExtraction::copyBaseVariables | ( | const FeatureExtraction * | featureExtractionModule | ) |
This copies the FeatureExtraction variables from featureExtractionModule to the instance that calls the function.
featureExtractionModule | a pointer to a feature extraction module from which the values will be copied |
Definition at line 62 of file FeatureExtraction.cpp.
FeatureExtraction * FeatureExtraction::createNewInstance | ( | ) | const |
Creates a new feature extraction instance based on the current featureExtractionType string value.
Definition at line 37 of file FeatureExtraction.cpp.
|
inlinevirtual |
This is the base deepCopyFrom function for the FeatureExtraction modules. This function should be overwritten by the derived class.
featureExtraction | a pointer to the FeatureExtraction base class, this should be pointing to another instance of a matching derived class |
Reimplemented in FFT, ZeroCrossingCounter, KMeansQuantizer, RBMQuantizer, SOMQuantizer, FFTFeatures, MovementTrajectoryFeatures, KMeansFeatures, MovementIndex, TimeseriesBuffer, and TimeDomainFeatures.
Definition at line 57 of file FeatureExtraction.h.
bool FeatureExtraction::getFeatureDataReady | ( | ) | const |
Returns true if the feature extraction module has just processed the last input vector and a new output feature vector is ready.
Definition at line 180 of file FeatureExtraction.cpp.
std::string FeatureExtraction::getFeatureExtractionType | ( | ) | const |
Returns the feature extraction type as a string.
Definition at line 164 of file FeatureExtraction.cpp.
const MatrixFloat & FeatureExtraction::getFeatureMatrix | ( | ) | const |
Returns the current feature matrix.
Definition at line 188 of file FeatureExtraction.cpp.
const VectorFloat & FeatureExtraction::getFeatureVector | ( | ) | const |
Returns the current feature vector.
Definition at line 184 of file FeatureExtraction.cpp.
bool FeatureExtraction::getInitialized | ( | ) | const |
Returns true if the feature extraction module has been initialized correctly.
Definition at line 176 of file FeatureExtraction.cpp.
UINT FeatureExtraction::getNumInputDimensions | ( | ) | const |
Returns the size of the input vector expected by the feature extraction module.
Definition at line 168 of file FeatureExtraction.cpp.
UINT FeatureExtraction::getNumOutputDimensions | ( | ) | const |
Returns the size of the feature vector that will be computed by the feature extraction module.
Definition at line 172 of file FeatureExtraction.cpp.
|
protected |
Initializes the base feature extraction module, this will resize the feature vector and get the instance ready for processing new data.
Definition at line 87 of file FeatureExtraction.cpp.
|
protected |
Loads the core base settings from a file.
Definition at line 133 of file FeatureExtraction.cpp.
|
inlinevirtual |
This loads the feature extraction settings from a file. This function should be overwritten by the derived class.
file | a reference to the file to load the settings from |
Reimplemented from MLBase.
Reimplemented in FFT, RBMQuantizer, ZeroCrossingCounter, SOMQuantizer, MovementTrajectoryFeatures, FFTFeatures, KMeansFeatures, MovementIndex, KMeansQuantizer, TimeseriesBuffer, and TimeDomainFeatures.
Definition at line 116 of file FeatureExtraction.h.
|
inlinevirtual |
This function is called by the GestureRecognitionPipeline's reset function. This function should be overwritten by the derived class.
Reimplemented from MLBase.
Reimplemented in FFT, ZeroCrossingCounter, RBMQuantizer, KMeansQuantizer, SOMQuantizer, MovementTrajectoryFeatures, FFTFeatures, KMeansFeatures, MovementIndex, TimeseriesBuffer, and TimeDomainFeatures.
Definition at line 91 of file FeatureExtraction.h.
|
protected |
Saves the core base settings to a file.
Definition at line 119 of file FeatureExtraction.cpp.
|
inlinevirtual |
This saves the feature extraction settings to a file. This function should be overwritten by the derived class.
file | a reference to the file to save the settings to |
Reimplemented from MLBase.
Reimplemented in FFT, RBMQuantizer, ZeroCrossingCounter, SOMQuantizer, MovementTrajectoryFeatures, FFTFeatures, KMeansFeatures, MovementIndex, KMeansQuantizer, TimeseriesBuffer, and TimeDomainFeatures.
Definition at line 107 of file FeatureExtraction.h.