GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <FFTFeatures.h>
Public Member Functions | |
FFTFeatures (UINT fftWindowSize=512, UINT numChannelsInFFTSignal=1, bool computeMaxFreqFeature=true, bool computeMaxFreqSpectrumRatio=true, bool computeCentroidFeature=true, bool computeTopNFreqFeatures=true, UINT N=10) | |
FFTFeatures (const FFTFeatures &rhs) | |
virtual | ~FFTFeatures (void) |
FFTFeatures & | operator= (const FFTFeatures &rhs) |
virtual bool | deepCopyFrom (const FeatureExtraction *featureExtraction) |
virtual bool | computeFeatures (const VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | init (UINT fftWindowSize, UINT numChannelsInFFTSignal, bool computeMaxFreqFeature, bool computeMaxFreqSpectrumRatio, bool computeCentroidFeature, bool computeTopNFreqFeatures, UINT N) |
Public Member Functions inherited from FeatureExtraction | |
FeatureExtraction () | |
virtual | ~FeatureExtraction () |
bool | copyBaseVariables (const FeatureExtraction *featureExtractionModule) |
virtual bool | computeFeatures (const MatrixFloat &inputMatrix) |
virtual bool | clear () |
std::string | getFeatureExtractionType () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
bool | getFeatureDataReady () const |
const VectorFloat & | getFeatureVector () const |
const MatrixFloat & | getFeatureMatrix () const |
FeatureExtraction * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | fftWindowSize |
UINT | numChannelsInFFTSignal |
bool | computeMaxFreqFeature |
bool | computeMaxFreqSpectrumRatio |
bool | computeCentroidFeature |
bool | computeTopNFreqFeatures |
UINT | N |
Float | maxFreqFeature |
Float | maxFreqSpectrumRatio |
Float | centroidFeature |
VectorFloat | topNFreqFeatures |
Protected Attributes inherited from FeatureExtraction | |
std::string | featureExtractionType |
bool | initialized |
bool | featureDataReady |
VectorFloat | featureVector |
MatrixFloat | featureMatrix |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterFeatureExtractionModule< FFTFeatures > | registerModule |
Additional Inherited Members | |
Public Types inherited from FeatureExtraction | |
typedef std::map< std::string, FeatureExtraction *(*)() > | StringFeatureExtractionMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from FeatureExtraction | |
static FeatureExtraction * | createInstanceFromString (const std::string &featureExtractionType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions inherited from FeatureExtraction | |
bool | init () |
bool | saveFeatureExtractionSettingsToFile (std::fstream &file) const |
bool | loadFeatureExtractionSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Static Protected Member Functions inherited from FeatureExtraction | |
static StringFeatureExtractionMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 37 of file FFTFeatures.h.
FFTFeatures::FFTFeatures | ( | UINT | fftWindowSize = 512 , |
UINT | numChannelsInFFTSignal = 1 , |
||
bool | computeMaxFreqFeature = true , |
||
bool | computeMaxFreqSpectrumRatio = true , |
||
bool | computeCentroidFeature = true , |
||
bool | computeTopNFreqFeatures = true , |
||
UINT | N = 10 |
||
) |
Default Constructor, sets the default settings for the FFTFeatures module. The fftWindowSize and numChannelsInFFTSignal parameters should match the settings of the FFT module that will be used as input to this module.
fftWindowSize | the window size of the FFT that will be used as input to this module. Default value = 512 |
numChannelsInFFTSignal | this is the number of channels (i.e. input dimensions) to the FFT module. Default value = 1 |
computeMaxFreqFeature | sets if the maximum frequency feature will be included in the feature vector. Default value = true |
computeMaxFreqSpectrumRatio | sets if the maximum-frequency spectrum-frequency ratio feature will be included in the feature vector. Default value = true |
computeCentroidFeature | sets if the centroid frequency feature will be included in the feature vector. Default value = true |
computeTopNFreqFeatures | sets if the top N frequency feature will be included in the feature vector. Default value = true |
N | sets if size of N for the top N frequency features. Default value = 10 |
Definition at line 30 of file FFTFeatures.cpp.
FFTFeatures::FFTFeatures | ( | const FFTFeatures & | rhs | ) |
Copy Constructor, copies the FFTFeatures from the rhs instance to this instance
rhs | another instance of the FFTFeatures class from which the data will be copied to this instance |
Definition at line 44 of file FFTFeatures.cpp.
|
virtual |
Default Destructor
Definition at line 57 of file FFTFeatures.cpp.
|
virtual |
Sets the FeatureExtraction computeFeatures function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example).
inputVector | the inputVector that should be processed. Must have the same dimensionality as the FeatureExtraction module |
Reimplemented from FeatureExtraction.
Definition at line 269 of file FFTFeatures.cpp.
|
virtual |
Sets the FeatureExtraction deepCopyFrom function, overwriting the base FeatureExtraction function. This function is used to deep copy the values from the input pointer to this instance of the FeatureExtraction module. This function is called by the GestureRecognitionPipeline when the user adds a new FeatureExtraction module to the pipeline.
featureExtraction | a pointer to another instance of an FFTFeatures, the values of that instance will be cloned to this instance |
Reimplemented from FeatureExtraction.
Definition at line 80 of file FFTFeatures.cpp.
bool FFTFeatures::init | ( | UINT | fftWindowSize, |
UINT | numChannelsInFFTSignal, | ||
bool | computeMaxFreqFeature, | ||
bool | computeMaxFreqSpectrumRatio, | ||
bool | computeCentroidFeature, | ||
bool | computeTopNFreqFeatures, | ||
UINT | N | ||
) |
Initializes the FFTFeatures. Should be called before calling the computeFFT(...) or computeFeatures(...) methods. This function is automatically called by the constructor.
fftWindowSize | the window size of the FFT that will be used as input to this module. Default value = FFT::FFT_WINDOW_SIZE_512 |
numChannelsInFFTSignal | the size of the FFT feature vector that will be used as input to this module. Default value = 1 |
computeMaxFreqFeature | sets if the maximum frequency feature will be included in the feature vector. Default value = true |
computeMaxFreqSpectrumRatio | sets if the maximum-frequency spectrum-frequency ratio feature will be included in the feature vector. Default value = true |
computeCentroidFeature | sets if the centroid frequency feature will be included in the feature vector. Default value = true |
computeTopNFreqFeatures | sets if the top N frequency feature will be included in the feature vector. Default value = true |
N | sets if size of N for the top N frequency features. Default value = 10 |
Definition at line 231 of file FFTFeatures.cpp.
|
virtual |
This saves the feature extraction settings to a file.
file | a reference to the file to save the settings to |
Reimplemented from MLBase.
Definition at line 111 of file FFTFeatures.cpp.
|
virtual |
This loads the feature extraction settings from a file. This overrides the loadSettingsFromFile function in the FeatureExtraction base class.
file | a reference to the file to load the settings from |
Reimplemented from FeatureExtraction.
Definition at line 154 of file FFTFeatures.cpp.
FFTFeatures & FFTFeatures::operator= | ( | const FFTFeatures & | rhs | ) |
Sets the equals operator, copies the data from the rhs instance to this instance
rhs | another instance of the FFTFeatures class from which the data will be copied to this instance |
Definition at line 61 of file FFTFeatures.cpp.
|
virtual |
Sets the FeatureExtraction reset function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when the pipelines main reset() function is called. This function resets the FFTFeatures by re-initiliazing the instance.
Reimplemented from FeatureExtraction.
Definition at line 346 of file FFTFeatures.cpp.
|
virtual |
This saves the feature extraction settings to a file.
filename | the filename to save the settings to |
Reimplemented from MLBase.
Definition at line 97 of file FFTFeatures.cpp.
|
virtual |
This saves the feature extraction settings to a file. This overrides the saveSettingsToFile function in the FeatureExtraction base class.
file | a reference to the file to save the settings to |
Reimplemented from FeatureExtraction.
Definition at line 126 of file FFTFeatures.cpp.