GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Types | |
enum | ZeroCrossingFeatureIDs { NUM_ZERO_CROSSINGS_COUNTED =0, ZERO_CROSSING_MAGNITUDE, TOTAL_NUM_ZERO_CROSSING_FEATURES } |
enum | FeatureModes { INDEPENDANT_FEATURE_MODE =0, COMBINED_FEATURE_MODE } |
Public Types inherited from FeatureExtraction | |
typedef std::map< std::string, FeatureExtraction *(*)() > | StringFeatureExtractionMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Public Member Functions | |
ZeroCrossingCounter (UINT searchWindowSize=20, Float deadZoneThreshold=0.01, UINT numDimensions=1, UINT featureMode=INDEPENDANT_FEATURE_MODE) | |
ZeroCrossingCounter (const ZeroCrossingCounter &rhs) | |
virtual | ~ZeroCrossingCounter () |
ZeroCrossingCounter & | operator= (const ZeroCrossingCounter &rhs) |
virtual bool | deepCopyFrom (const FeatureExtraction *featureExtraction) |
virtual bool | computeFeatures (const VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | init (UINT searchWindowSize, Float deadZoneThreshold, UINT numDimensions, UINT featureMode) |
VectorFloat | update (Float x) |
VectorFloat | update (const VectorFloat &x) |
bool | setSearchWindowSize (UINT searchWindowSize) |
bool | setFeatureMode (UINT featureMode) |
bool | setDeadZoneThreshold (Float deadZoneThreshold) |
UINT | getSearchWindowSize () |
UINT | getNumFeatures () |
UINT | getFeatureMode () |
Float | getDeadZoneThreshold () |
CircularBuffer< VectorFloat > | getDataBuffer () |
Public Member Functions inherited from FeatureExtraction | |
FeatureExtraction () | |
virtual | ~FeatureExtraction () |
bool | copyBaseVariables (const FeatureExtraction *featureExtractionModule) |
virtual bool | computeFeatures (const MatrixFloat &inputMatrix) |
virtual bool | clear () |
std::string | getFeatureExtractionType () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
bool | getFeatureDataReady () const |
const VectorFloat & | getFeatureVector () const |
const MatrixFloat & | getFeatureMatrix () const |
FeatureExtraction * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | searchWindowSize |
The size of the search window, i.e. the amount of previous data stored and searched. | |
UINT | featureMode |
The featureMode controls how the features are added to the feature vector. | |
Float | deadZoneThreshold |
The threshold value used for the dead zone filter. | |
Derivative | derivative |
Used to compute the derivative of the input signal. | |
DeadZone | deadZone |
Used to remove small amounts of noise from the data. | |
CircularBuffer< VectorFloat > | dataBuffer |
A buffer used to store the previous derivative data. | |
Protected Attributes inherited from FeatureExtraction | |
std::string | featureExtractionType |
bool | initialized |
bool | featureDataReady |
VectorFloat | featureVector |
MatrixFloat | featureMatrix |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterFeatureExtractionModule< ZeroCrossingCounter > | registerModule |
Additional Inherited Members | |
Static Public Member Functions inherited from FeatureExtraction | |
static FeatureExtraction * | createInstanceFromString (const std::string &featureExtractionType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions inherited from FeatureExtraction | |
bool | init () |
bool | saveFeatureExtractionSettingsToFile (std::fstream &file) const |
bool | loadFeatureExtractionSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Static Protected Member Functions inherited from FeatureExtraction | |
static StringFeatureExtractionMap * | getMap () |
Definition at line 50 of file ZeroCrossingCounter.h.
ZeroCrossingCounter::ZeroCrossingCounter | ( | UINT | searchWindowSize = 20 , |
Float | deadZoneThreshold = 0.01 , |
||
UINT | numDimensions = 1 , |
||
UINT | featureMode = INDEPENDANT_FEATURE_MODE |
||
) |
Constructor, sets the search window size, deadZoneThreshold, and the dimensionality of the input data. The search window size sets how much data should be held in memory and searched each time the update function is called.
searchWindowSize | sets how much data should be held in memory and searched each time the update function is called. Default value = 20 |
deadZoneThreshold | sets the dead zone threshold. Default value = 0.01 |
numDimensions | the dimensionality of the input data to filter. Default numDimensions = 1 |
featureMode | sets how the features are added to the feature vector, shoule be either INDEPENDANT_FEATURE_MODE or COMBINED_FEATURE_MODE. Default is featureMode = INDEPENDANT_FEATURE_MODE |
Definition at line 28 of file ZeroCrossingCounter.cpp.
ZeroCrossingCounter::ZeroCrossingCounter | ( | const ZeroCrossingCounter & | rhs | ) |
Copy constructor, copies the ZeroCrossingCounter from the rhs instance to this instance.
rhs | another instance of the ZeroCrossingCounter class from which the data will be copied to this instance |
Definition at line 39 of file ZeroCrossingCounter.cpp.
|
virtual |
Default Destructor
Definition at line 51 of file ZeroCrossingCounter.cpp.
|
virtual |
Sets the FeatureExtraction computeFeatures function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This function calls the ZeroCrossingCounter's update function.
inputVector | the inputVector that should be processed. Must have the same dimensionality as the FeatureExtraction module |
Reimplemented from FeatureExtraction.
Definition at line 84 of file ZeroCrossingCounter.cpp.
|
virtual |
Sets the FeatureExtraction deepCopyFrom function, overwriting the base FeatureExtraction function. This function is used to deep copy the values from the input pointer to this instance of the FeatureExtraction module. This function is called by the GestureRecognitionPipeline when the user adds a new FeatureExtraction module to the pipeleine.
featureExtraction | a pointer to another instance of a ZeroCrossingCounter, the values of that instance will be cloned to this instance |
Reimplemented from FeatureExtraction.
Definition at line 69 of file ZeroCrossingCounter.cpp.
|
inline |
Gets the current values in the data buffer. An empty circular buffer will be returned if the ZeroCrossingCounter has not been initialized.
Definition at line 237 of file ZeroCrossingCounter.h.
|
inline |
Gets the deadZoneThreshold value.
Definition at line 229 of file ZeroCrossingCounter.h.
|
inline |
Gets the current featureMode, this will be either INDEPENDANT_FEATURE_MODE (0) or COMBINED_FEATURE_MODE (1).
Definition at line 222 of file ZeroCrossingCounter.h.
|
inline |
Gets the number of feature values computed for each input dimensions. The size of the feature vector will be getNumFeatures() * numInputDimensions.
Definition at line 215 of file ZeroCrossingCounter.h.
|
inline |
Gets the search window size.
Definition at line 207 of file ZeroCrossingCounter.h.
bool ZeroCrossingCounter::init | ( | UINT | searchWindowSize, |
Float | deadZoneThreshold, | ||
UINT | numDimensions, | ||
UINT | featureMode | ||
) |
Initializes the ZeroCrossingCounter, setting the searchWindowSize, deadZoneThreshold, and dimensionality of the data it will filter. The search window size, deadZoneThreshold, and numDimensions values must be larger than 0. Sets all the data buffer values to zero.
searchWindowSize | sets how much data should be held in memory and searched each time the update function is called |
deadZoneThreshold | sets the dead zone threshold value |
numDimensions | the dimensionality of the input data to filter |
featureMode | sets how the features are added to the feature vector, shoule be either INDEPENDANT_FEATURE_MODE or COMBINED_FEATURE_MODE |
Definition at line 208 of file ZeroCrossingCounter.cpp.
|
virtual |
This saves the feature extraction settings to a file.
file | a reference to the file to save the settings to |
Reimplemented from MLBase.
Definition at line 122 of file ZeroCrossingCounter.cpp.
|
virtual |
This loads the feature extraction settings from a file. This overrides the loadSettingsFromFile function in the FeatureExtraction base class.
file | a reference to the file to load the settings from |
Reimplemented from FeatureExtraction.
Definition at line 161 of file ZeroCrossingCounter.cpp.
ZeroCrossingCounter & ZeroCrossingCounter::operator= | ( | const ZeroCrossingCounter & | rhs | ) |
Sets the equals operator, copies the data from the rhs instance to this instance.
rhs | another instance of the ZeroCrossingCounter class from which the data will be copied to this instance |
Definition at line 55 of file ZeroCrossingCounter.cpp.
|
virtual |
Sets the FeatureExtraction reset function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when the pipelines main reset() function is called. This function resets the feature extraction by re-initiliazing the instance.
Reimplemented from FeatureExtraction.
Definition at line 101 of file ZeroCrossingCounter.cpp.
|
virtual |
This saves the feature extraction settings to a file.
filename | the filename to save the settings to |
Reimplemented from MLBase.
Definition at line 108 of file ZeroCrossingCounter.cpp.
|
virtual |
This saves the feature extraction settings to a file. This overrides the saveSettingsToFile function in the FeatureExtraction base class.
file | a reference to the file to save the settings to |
Reimplemented from FeatureExtraction.
Definition at line 137 of file ZeroCrossingCounter.cpp.
bool ZeroCrossingCounter::setDeadZoneThreshold | ( | Float | deadZoneThreshold | ) |
Sets the deadZoneThreshold. The deadZoneThreshold must be larger than zero. Calling this function will reset the feature extraction.
deadZoneThreshold | sets the dead zone threshold value |
Definition at line 326 of file ZeroCrossingCounter.cpp.
bool ZeroCrossingCounter::setFeatureMode | ( | UINT | featureMode | ) |
Sets the featureMode, this should be either INDEPENDANT_FEATURE_MODE (0) or COMBINED_FEATURE_MODE (1). Calling this function will reset the feature extraction.
featureMode | sets the featureMode, options are either INDEPENDANT_FEATURE_MODE (0) or COMBINED_FEATURE_MODE (1) |
Definition at line 316 of file ZeroCrossingCounter.cpp.
bool ZeroCrossingCounter::setSearchWindowSize | ( | UINT | searchWindowSize | ) |
Sets the search window size. The search window size must be larger than zero. Calling this function will reset the feature extraction.
searchWindowSize | sets how much data should be held in memory and searched each time the update function is called |
Definition at line 306 of file ZeroCrossingCounter.cpp.
VectorFloat ZeroCrossingCounter::update | ( | Float | x | ) |
Computes the ZeroCrossingCounter features from the input, this should only be called if the dimensionality of this instance was set to 1.
x | the value to compute features from, this should only be called if the dimensionality of the filter was set to 1 |
Definition at line 251 of file ZeroCrossingCounter.cpp.
VectorFloat ZeroCrossingCounter::update | ( | const VectorFloat & | x | ) |
Computes the ZeroCrossingCounter features from the input, the dimensionality of x should match that of this instance.
x | a vector containing the values to be processed, must be the same size as the numInputDimensions |
Definition at line 255 of file ZeroCrossingCounter.cpp.