GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
RegisterFeatureExtractionModule< T > Member List

This is the complete list of members for RegisterFeatureExtractionModule< T >, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBaseprivate
baseType (defined in MLBase)MLBaseprivate
BaseType enum name (defined in MLBase)MLBaseprivate
batchSize (defined in MLBase)MLBaseprivate
classIdGRTBaseprivate
CLASSIFIER enum value (defined in MLBase)MLBaseprivate
clear() overrideFeatureExtractionprivatevirtual
CLUSTERER enum value (defined in MLBase)MLBaseprivate
computeFeatures(const VectorFloat &inputVector)FeatureExtractioninlineprivatevirtual
computeFeatures(const MatrixFloat &inputMatrix)FeatureExtractioninlineprivatevirtual
CONTEXT enum value (defined in MLBase)MLBaseprivate
converged (defined in MLBase)MLBaseprivate
copyBaseVariables(const FeatureExtraction *featureExtractionModule)FeatureExtractionprivate
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBaseprivate
copyMLBaseVariables(const MLBase *mlBase)MLBaseprivate
create(const std::string &id) (defined in FeatureExtraction)FeatureExtractionprivatestatic
create() const FeatureExtractionprivate
debugLog (defined in GRTBase)GRTBaseprivate
deepCopyFrom(const FeatureExtraction *rhs)FeatureExtractioninlineprivatevirtual
enableScaling(const bool useScaling)MLBaseprivate
errorLog (defined in GRTBase)GRTBaseprivate
FEATURE_EXTRACTION enum value (defined in MLBase)MLBaseprivate
featureDataReady (defined in FeatureExtraction)FeatureExtractionprivate
FeatureExtraction(const std::string id="")FeatureExtractionprivate
featureExtractionType (defined in FeatureExtraction)FeatureExtractionprivate
featureMatrix (defined in FeatureExtraction)FeatureExtractionprivate
featureVector (defined in FeatureExtraction)FeatureExtractionprivate
getBatchSize() const MLBaseprivate
getConverged() const MLBaseprivate
getFeatureDataReady() const FeatureExtractionprivate
getFeatureMatrix() const FeatureExtractionprivate
getFeatureVector() const FeatureExtractionprivate
getGRTBasePointer()GRTBaseprivate
getGRTBasePointer() const GRTBaseprivate
getGRTRevison()GRTBaseprivatestatic
getGRTVersion(bool returnRevision=true)GRTBaseprivatestatic
getId() const GRTBaseprivate
getInitialized() const FeatureExtractionprivate
getInputType() const MLBaseprivate
getIsBaseTypeClassifier() const MLBaseprivate
getIsBaseTypeClusterer() const MLBaseprivate
getIsBaseTypeRegressifier() const MLBaseprivate
getLastErrorMessage() const GRTBaseprivate
getLastInfoMessage() const GRTBaseprivate
getLastWarningMessage() const GRTBaseprivate
getLearningRate() const MLBaseprivate
getMap() (defined in FeatureExtraction)FeatureExtractioninlineprivatestatic
getMaxNumEpochs() const MLBaseprivate
getMinChange() const MLBaseprivate
getMinNumEpochs() const MLBaseprivate
getMLBasePointer()MLBaseprivate
getMLBasePointer() const MLBaseprivate
getModel(std::ostream &stream) const MLBaseprivatevirtual
getModelAsString() const MLBaseprivatevirtual
getNumInputDimensions() const MLBaseprivate
getNumInputFeatures() const MLBaseprivate
getNumOutputDimensions() const MLBaseprivate
getNumRestarts() const MLBaseprivate
getNumTrainingIterationsToConverge() const MLBaseprivate
getOutputType() const MLBaseprivate
getRandomiseTrainingOrder() const MLBaseprivate
getRMSTrainingError() const MLBaseprivate
getRMSValidationError() const MLBaseprivate
getScalingEnabled() const MLBaseprivate
getTestingLoggingEnabled() const MLBaseprivate
getTotalSquaredTrainingError() const MLBaseprivate
getTrained() const MLBaseprivate
getTrainingLoggingEnabled() const MLBaseprivate
getTrainingResults() const MLBaseprivate
getType() const MLBaseprivate
getUseValidationSet() const MLBaseprivate
getValidationSetAccuracy() const MLBaseprivate
getValidationSetPrecision() const MLBaseprivate
getValidationSetRecall() const MLBaseprivate
getValidationSetSize() const MLBaseprivate
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create() instead.", FeatureExtraction *createNewInstance() const ) (defined in FeatureExtraction)FeatureExtractionprivate
GRT_DEPRECATED_MSG("createInstanceFromString(id) is deprecated, use create(id) instead.", static FeatureExtraction *createInstanceFromString(const std::string &id)) (defined in FeatureExtraction)FeatureExtractionprivate
GRT_DEPRECATED_MSG("getFeatureExtractionType is deprecated, use getId() instead", std::string getFeatureExtractionType() const ) (defined in FeatureExtraction)FeatureExtractionprivate
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBaseprivate
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBaseprivate
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBaseprivate
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBaseprivate
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBaseprivate
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBaseprivate
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBaseprivate
GRTBase(const std::string &id="")GRTBaseprivate
infoLog (defined in GRTBase)GRTBaseprivate
init()FeatureExtractionprivate
initialized (defined in FeatureExtraction)FeatureExtractionprivate
inputType (defined in MLBase)MLBaseprivate
learningRate (defined in MLBase)MLBaseprivate
load(const std::string &filename)MLBaseprivatevirtual
load(std::fstream &file)MLBaseprivatevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprivate
loadFeatureExtractionSettingsFromFile(std::fstream &file)FeatureExtractionprivate
map(VectorFloat inputVector)MLBaseprivatevirtual
map_(VectorFloat &inputVector)MLBaseprivatevirtual
maxNumEpochs (defined in MLBase)MLBaseprivate
minChange (defined in MLBase)MLBaseprivate
minNumEpochs (defined in MLBase)MLBaseprivate
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBaseprivate
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlineprivatevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlineprivatevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBaseprivate
notifyTrainingResultsObservers(const TrainingResult &data)MLBaseprivate
numInputDimensions (defined in MLBase)MLBaseprivate
numOutputDimensions (defined in MLBase)MLBaseprivate
numRestarts (defined in MLBase)MLBaseprivate
numTrainingIterationsToConverge (defined in MLBase)MLBaseprivate
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlineprivate
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlineprivate
outputType (defined in MLBase)MLBaseprivate
POST_PROCESSING enum value (defined in MLBase)MLBaseprivate
PRE_PROCSSING enum value (defined in MLBase)MLBaseprivate
predict(VectorFloat inputVector)MLBaseprivatevirtual
predict(MatrixFloat inputMatrix)MLBaseprivatevirtual
predict_(VectorFloat &inputVector)MLBaseprivatevirtual
predict_(MatrixFloat &inputMatrix)MLBaseprivatevirtual
print() const MLBaseprivatevirtual
random (defined in MLBase)MLBaseprivate
randomiseTrainingOrder (defined in MLBase)MLBaseprivate
RegisterFeatureExtractionModule(const std::string &newModuleId) (defined in RegisterFeatureExtractionModule< T >)RegisterFeatureExtractionModule< T >inline
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBaseprivate
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBaseprivate
REGRESSIFIER enum value (defined in MLBase)MLBaseprivate
removeAllTestObservers()MLBaseprivate
removeAllTrainingObservers()MLBaseprivate
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBaseprivate
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBaseprivate
reset()MLBaseprivatevirtual
rmsTrainingError (defined in MLBase)MLBaseprivate
rmsValidationError (defined in MLBase)MLBaseprivate
save(const std::string &filename) const MLBaseprivatevirtual
save(std::fstream &file) const MLBaseprivatevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprivate
saveFeatureExtractionSettingsToFile(std::fstream &file) const FeatureExtractionprivate
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinlineprivate
setBatchSize(const UINT batchSize)MLBaseprivate
setDebugLoggingEnabled(const bool loggingEnabled)GRTBaseprivate
setErrorLoggingEnabled(const bool loggingEnabled)GRTBaseprivate
setInfoLoggingEnabled(const bool loggingEnabled)GRTBaseprivate
setLearningRate(const Float learningRate)MLBaseprivate
setMaxNumEpochs(const UINT maxNumEpochs)MLBaseprivate
setMinChange(const Float minChange)MLBaseprivate
setMinNumEpochs(const UINT minNumEpochs)MLBaseprivate
setNumRestarts(const UINT numRestarts)MLBaseprivate
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBaseprivate
setTestingLoggingEnabled(const bool loggingEnabled)MLBaseprivate
setTrainingLoggingEnabled(const bool loggingEnabled)MLBaseprivate
setUseValidationSet(const bool useValidationSet)MLBaseprivate
setValidationSetSize(const UINT validationSetSize)MLBaseprivate
setWarningLoggingEnabled(const bool loggingEnabled)GRTBaseprivate
SQR(const Float &x) const (defined in GRTBase)GRTBaseinlineprivate
StringFeatureExtractionMap typedefFeatureExtractionprivate
testingLog (defined in MLBase)MLBaseprivate
testResultsObserverManager (defined in MLBase)MLBaseprivate
totalSquaredTrainingError (defined in MLBase)MLBaseprivate
train(ClassificationData trainingData)MLBaseprivatevirtual
train(RegressionData trainingData)MLBaseprivatevirtual
train(RegressionData trainingData, RegressionData validationData)MLBaseprivatevirtual
train(TimeSeriesClassificationData trainingData)MLBaseprivatevirtual
train(ClassificationDataStream trainingData)MLBaseprivatevirtual
train(UnlabelledData trainingData)MLBaseprivatevirtual
train(MatrixFloat data)MLBaseprivatevirtual
train_(ClassificationData &trainingData)MLBaseprivatevirtual
train_(RegressionData &trainingData)MLBaseprivatevirtual
train_(RegressionData &trainingData, RegressionData &validationData)MLBaseprivatevirtual
train_(TimeSeriesClassificationData &trainingData)MLBaseprivatevirtual
train_(ClassificationDataStream &trainingData)MLBaseprivatevirtual
train_(UnlabelledData &trainingData)MLBaseprivatevirtual
train_(MatrixFloat &data)MLBaseprivatevirtual
trained (defined in MLBase)MLBaseprivate
trainingLog (defined in MLBase)MLBaseprivate
trainingResults (defined in MLBase)MLBaseprivate
trainingResultsObserverManager (defined in MLBase)MLBaseprivate
useScaling (defined in MLBase)MLBaseprivate
useValidationSet (defined in MLBase)MLBaseprivate
validationSetAccuracy (defined in MLBase)MLBaseprivate
validationSetPrecision (defined in MLBase)MLBaseprivate
validationSetRecall (defined in MLBase)MLBaseprivate
validationSetSize (defined in MLBase)MLBaseprivate
warningLog (defined in GRTBase)GRTBaseprivate
~FeatureExtraction()FeatureExtractionprivatevirtual
~GRTBase(void)GRTBaseprivatevirtual
~MLBase(void)MLBaseprivatevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlineprivatevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlineprivatevirtual