GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
RBMQuantizer Member List

This is the complete list of members for RBMQuantizer, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
classIdGRTBaseprotected
CLASSIFIER enum value (defined in MLBase)MLBase
clear()RBMQuantizervirtual
CLUSTERER enum value (defined in MLBase)MLBase
computeFeatures(const VectorFloat &inputVector)RBMQuantizervirtual
FeatureExtraction::computeFeatures(const MatrixFloat &inputMatrix)FeatureExtractioninlinevirtual
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in MLBase)MLBaseprotected
copyBaseVariables(const FeatureExtraction *featureExtractionModule)FeatureExtraction
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
create(const std::string &id) (defined in FeatureExtraction)FeatureExtractionstatic
create() const FeatureExtraction
debugLog (defined in GRTBase)GRTBaseprotected
deepCopyFrom(const FeatureExtraction *featureExtraction)RBMQuantizervirtual
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
featureDataReady (defined in FeatureExtraction)FeatureExtractionprotected
FeatureExtraction(const std::string id="")FeatureExtraction
featureExtractionType (defined in FeatureExtraction)FeatureExtractionprotected
featureMatrix (defined in FeatureExtraction)FeatureExtractionprotected
featureVector (defined in FeatureExtraction)FeatureExtractionprotected
getBatchSize() const MLBase
getBernoulliRBM() const RBMQuantizer
getConverged() const MLBase
getFeatureDataReady() const FeatureExtraction
getFeatureMatrix() const FeatureExtraction
getFeatureVector() const FeatureExtraction
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getId()RBMQuantizerstatic
FeatureExtraction::getId() const GRTBase
getInitialized() const FeatureExtraction
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in FeatureExtraction)FeatureExtractioninlineprotectedstatic
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getNumClusters() const RBMQuantizer
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getQuantizationDistances() const RBMQuantizer
getQuantizedValue() const RBMQuantizer
getQuantizerTrained() const RBMQuantizer
getRandomiseTrainingOrder() const MLBase
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getTestingLoggingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingLoggingEnabled() const MLBase
getTrainingResults() const MLBase
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create() instead.", FeatureExtraction *createNewInstance() const ) (defined in FeatureExtraction)FeatureExtraction
GRT_DEPRECATED_MSG("createInstanceFromString(id) is deprecated, use create(id) instead.", static FeatureExtraction *createInstanceFromString(const std::string &id)) (defined in FeatureExtraction)FeatureExtraction
GRT_DEPRECATED_MSG("getFeatureExtractionType is deprecated, use getId() instead", std::string getFeatureExtractionType() const ) (defined in FeatureExtraction)FeatureExtraction
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
init()FeatureExtractionprotected
initialized (defined in FeatureExtraction)FeatureExtractionprotected
inputType (defined in MLBase)MLBaseprotected
learningRate (defined in MLBase)MLBaseprotected
load(std::fstream &file)RBMQuantizervirtual
FeatureExtraction::load(const std::string &filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprotected
loadFeatureExtractionSettingsFromFile(std::fstream &file)FeatureExtractionprotected
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numClusters (defined in RBMQuantizer)RBMQuantizerprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator=(const RBMQuantizer &rhs)RBMQuantizer
outputType (defined in MLBase)MLBaseprotected
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)MLBasevirtual
predict_(MatrixFloat &inputMatrix)MLBasevirtual
print() const MLBasevirtual
quantizationDistances (defined in RBMQuantizer)RBMQuantizerprotected
quantize(const Float inputValue)RBMQuantizer
quantize(const VectorFloat &inputVector)RBMQuantizer
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
rbm (defined in RBMQuantizer)RBMQuantizerprotected
RBMQuantizer(const UINT numClusters=10)RBMQuantizer
RBMQuantizer(const RBMQuantizer &rhs)RBMQuantizer
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()RBMQuantizervirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(std::fstream &file) const RBMQuantizervirtual
FeatureExtraction::save(const std::string &filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprotected
saveFeatureExtractionSettingsToFile(std::fstream &file) const FeatureExtractionprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
setBatchSize(const UINT batchSize)MLBase
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setNumClusters(const UINT numClusters)RBMQuantizer
setNumRestarts(const UINT numRestarts)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
StringFeatureExtractionMap typedefFeatureExtraction
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)RBMQuantizervirtual
train_(TimeSeriesClassificationData &trainingData)RBMQuantizervirtual
train_(ClassificationDataStream &trainingData)RBMQuantizervirtual
train_(UnlabelledData &trainingData)RBMQuantizervirtual
train_(MatrixFloat &trainingData)RBMQuantizervirtual
FeatureExtraction::train_(RegressionData &trainingData)MLBasevirtual
FeatureExtraction::train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~FeatureExtraction()FeatureExtractionvirtual
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~RBMQuantizer()RBMQuantizervirtual