GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Types | |
enum | SVMTypes { C_SVC = 0, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR } |
enum | SVMKernelTypes { LINEAR_KERNEL = 0, POLY_KERNEL, RBF_KERNEL, SIGMOID_KERNEL, PRECOMPUTED_KERNEL } |
Public Types inherited from Classifier | |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Public Member Functions | |
SVM (UINT kernelType=LINEAR_KERNEL, UINT svmType=C_SVC, bool useScaling=true, bool useNullRejection=false, bool useAutoGamma=true, Float gamma=0.1, UINT degree=3, Float coef0=0, Float nu=0.5, Float C=1, bool useCrossValidation=false, UINT kFoldValue=10) | |
SVM (const SVM &rhs) | |
virtual | ~SVM () |
SVM & | operator= (const SVM &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | init (UINT kernelType, UINT svmType, bool useScaling, bool useNullRejection, bool useAutoGamma, Float gamma, UINT degree, Float coef0, Float nu, Float C, bool useCrossValidation, UINT kFoldValue) |
void | initDefaultSVMSettings () |
bool | getIsCrossValidationTrainingEnabled () const |
bool | getIsAutoGammaEnabled () const |
std::string | getSVMType () const |
std::string | getKernelType () const |
UINT | getDegree () const |
virtual UINT | getNumClasses () const |
Float | getGamma () const |
Float | getNu () const |
Float | getCoef0 () const |
Float | getC () const |
Float | getCrossValidationResult () const |
struct svm_model * | getModel () const |
bool | setSVMType (const UINT svmType) |
bool | setKernelType (const UINT kernelType) |
bool | setGamma (const Float gamma) |
bool | setDegree (const UINT degree) |
bool | setNu (const Float nu) |
bool | setCoef0 (const Float coef0) |
bool | setC (const Float C) |
bool | setKFoldCrossValidationValue (const UINT kFoldValue) |
bool | enableAutoGamma (const bool useAutoGamma) |
bool | enableCrossValidationTraining (const bool useCrossValidation) |
Public Member Functions inherited from Classifier | |
Classifier (void) | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
UINT | getClassLabelIndexValue (UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (bool useNullRejection) |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
virtual bool | recomputeNullRejectionThresholds () |
bool | getTimeseriesCompatible () const |
Classifier * | createNewInstance () const |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
void | deleteProblemSet () |
bool | validateProblemAndParameters () |
bool | validateSVMType (UINT svmType) |
bool | validateKernelType (UINT kernelType) |
bool | convertClassificationDataToLIBSVMFormat (ClassificationData &trainingData) |
bool | trainSVM () |
bool | predictSVM (VectorFloat &inputVector) |
bool | predictSVM (VectorFloat &inputVector, Float &maxProbability, VectorFloat &probabilites) |
bool | loadLegacyModelFromFile (std::fstream &file) |
struct svm_model * | deepCopyModel () const |
bool | deepCopyProblem (const struct svm_problem &source_problem, struct svm_problem &target_problem, const unsigned int numInputDimensions) const |
bool | deepCopyParam (const svm_parameter &source_param, svm_parameter &target_param) const |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
bool | problemSet |
struct svm_model * | model |
struct svm_parameter | param |
struct svm_problem | prob |
UINT | kFoldValue |
Float | classificationThreshold |
Float | crossValidationResult |
bool | useAutoGamma |
bool | useCrossValidation |
Protected Attributes inherited from Classifier | |
std::string | classifierType |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterClassifierModule< SVM > | registerModule |
Additional Inherited Members | |
Static Public Member Functions inherited from Classifier | |
static Classifier * | createInstanceFromString (std::string const &classifierType) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
SVM::SVM | ( | UINT | kernelType = LINEAR_KERNEL , |
UINT | svmType = C_SVC , |
||
bool | useScaling = true , |
||
bool | useNullRejection = false , |
||
bool | useAutoGamma = true , |
||
Float | gamma = 0.1 , |
||
UINT | degree = 3 , |
||
Float | coef0 = 0 , |
||
Float | nu = 0.5 , |
||
Float | C = 1 , |
||
bool | useCrossValidation = false , |
||
UINT | kFoldValue = 10 |
||
) |
Default constructor.
Set the initial SVM settings, although these can be changed at any time using either init(...) function of the set... functions.
kernelType | this sets the SVM kernelType. Options are LINEAR_KERNEL, POLY_KERNEL, RBF_KERNEL, SIGMOID_KERNEL, PRECOMPUTED_KERNEL. The default kernelType is kernelType=LINEAR_KERNEL |
svmType | this sets the SVM type. Options are C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR. The default svmType is svmType=C_SVC |
useScaling | sets if the training/prediction data will be scaled to the default range of [-1. 1.]. The SVM algorithm commonly achieves a better classification result if scaling is turned on. The default useScaling value is useScaling=true |
useNullRejection | sets if a predicted class will be rejected if the classes' probability is below the classificationThreshold. The default value is useNullRejection=false |
useAutoGamma | sets if the SVM gamma parameter will automatically be computed, if set to true then gamma will be set to (1.0/numFeatures), where numFeatures is the number of features in the training data. The default value is useAutoGamma=true |
gamma | sets the SVM gamma parameter. The default value is gamma=0.1 |
degree | sets the SVM degree parameter. The default value is degree=3 |
coef0 | sets the SVM coef0 parameter. The default value is coef0=0 |
nu | sets the SVM nu parameter. The default value is nu=0.5 |
C | sets the SVM C parameter. The default value is C=1 |
useCrossValidation | sets if the SVM model will be trained using cross validation. The default value is useCrossValidation=false |
kFoldValue | sets the number of folds that will be used for cross validation. The default value is kFoldValue=10 |
SVM::SVM | ( | const SVM & | rhs | ) |
|
virtual |
Clears any previous model or problem.
Reimplemented from Classifier.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an SVM instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another SVM instance |
Reimplemented from Classifier.
bool SVM::enableAutoGamma | ( | const bool | useAutoGamma | ) |
bool SVM::enableCrossValidationTraining | ( | const bool | useCrossValidation | ) |
Float SVM::getC | ( | ) | const |
Float SVM::getCoef0 | ( | ) | const |
Float SVM::getCrossValidationResult | ( | ) | const |
UINT SVM::getDegree | ( | ) | const |
Float SVM::getGamma | ( | ) | const |
bool SVM::getIsAutoGammaEnabled | ( | ) | const |
bool SVM::getIsCrossValidationTrainingEnabled | ( | ) | const |
std::string SVM::getKernelType | ( | ) | const |
Float SVM::getNu | ( | ) | const |
|
virtual |
Returns the number of classes in the trained model.
If the model has not been trained then 0 will be returned.
Reimplemented from Classifier.
std::string SVM::getSVMType | ( | ) | const |
bool SVM::init | ( | UINT | kernelType, |
UINT | svmType, | ||
bool | useScaling, | ||
bool | useNullRejection, | ||
bool | useAutoGamma, | ||
Float | gamma, | ||
UINT | degree, | ||
Float | coef0, | ||
Float | nu, | ||
Float | C, | ||
bool | useCrossValidation, | ||
UINT | kFoldValue | ||
) |
This initializes the SVM settings and parameters. Any previous model, settings, or problems will be cleared.
kernelType | this sets the SVM kernelType. Options are LINEAR_KERNEL, POLY_KERNEL, RBF_KERNEL, SIGMOID_KERNEL, PRECOMPUTED_KERNEL |
UINT | svmType: this sets the SVM type. Options are C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR |
useScaling | sets if the training/prediction data will be scaled to the default range of [-1. 1.]. The SVM algorithm commonly achieves a better classification result if scaling is turned on |
useNullRejection | sets if a predicted class will be rejected if the classes' probability is below the classificationThreshold |
useAutoGamma | sets if the SVM gamma parameter will automatically be computed, if set to true then gamma will be set to (1.0/numFeatures), where numFeatures is the number of features in the training data |
gamma | sets the SVM gamma parameter |
degree | sets the SVM degree parameter |
coef0 | sets the SVM coef0 parameter |
nu | sets the SVM nu parameter |
C | sets the SVM C parameter |
useCrossValidation | sets if the SVM model will be trained using cross validation |
kFoldValue | sets the number of folds that will be used for cross validation |
void SVM::initDefaultSVMSettings | ( | ) |
|
protected |
|
virtual |
This loads a trained SVM model from a file. This overrides the loadModelFromFile function in the Classifier base class.
file | a reference to the file the SVM model will be loaded from |
Reimplemented from MLBase.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
|
virtual |
This saves the trained SVM model to a file. This overrides the saveModelToFile function in the Classifier base class.
file | a reference to the file the SVM model will be saved to |
Reimplemented from MLBase.
bool SVM::setC | ( | const Float | C | ) |
bool SVM::setCoef0 | ( | const Float | coef0 | ) |
bool SVM::setDegree | ( | const UINT | degree | ) |
bool SVM::setGamma | ( | const Float | gamma | ) |
bool SVM::setKernelType | ( | const UINT | kernelType | ) |
Sets the kernel type. This should be one of the SVMKernelTypes enumeration types.
kernelType | the new kernel, options are LINEAR_KERNEL, POLY_KERNEL, RBF_KERNEL, SIGMOID_KERNEL, PRECOMPUTED_KERNEL |
bool SVM::setKFoldCrossValidationValue | ( | const UINT | kFoldValue | ) |
bool SVM::setNu | ( | const Float | nu | ) |
bool SVM::setSVMType | ( | const UINT | svmType | ) |
|
virtual |
This trains the SVM model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.