GestureRecognitionToolkit  Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
SVM Member List

This is the complete list of members for SVM, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
BaseTypes enum name (defined in MLBase)MLBase
bestDistance (defined in Classifier)Classifierprotected
C_SVC enum value (defined in SVM)SVM
classDistances (defined in Classifier)Classifierprotected
classificationThreshold (defined in SVM)SVMprotected
CLASSIFIER enum value (defined in MLBase)MLBase
Classifier(void)Classifier
classifierMode (defined in Classifier)Classifierprotected
ClassifierModes enum name (defined in Classifier)Classifierprotected
classifierType (defined in Classifier)Classifierprotected
classLabels (defined in Classifier)Classifierprotected
classLikelihoods (defined in Classifier)Classifierprotected
classType (defined in GRTBase)GRTBaseprotected
clear()SVMvirtual
CLUSTERER enum value (defined in MLBase)MLBase
convertClassificationDataToLIBSVMFormat(ClassificationData &trainingData) (defined in SVM)SVMprotected
copyBaseVariables(const Classifier *classifier)Classifier
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
createInstanceFromString(std::string const &classifierType)Classifierstatic
createNewInstance() const Classifier
crossValidationResult (defined in SVM)SVMprotected
debugLog (defined in GRTBase)GRTBaseprotected
deepCopy() const Classifier
deepCopyFrom(const Classifier *classifier)SVMvirtual
deepCopyModel() const (defined in SVM)SVMprotected
deepCopyParam(const svm_parameter &source_param, svm_parameter &target_param) const (defined in SVM)SVMprotected
deepCopyProblem(const struct svm_problem &source_problem, struct svm_problem &target_problem, const unsigned int numInputDimensions) const (defined in SVM)SVMprotected
deleteProblemSet() (defined in SVM)SVMprotected
enableAutoGamma(const bool useAutoGamma)SVM
enableCrossValidationTraining(const bool useCrossValidation)SVM
enableNullRejection(bool useNullRejection)Classifier
enableScaling(const bool useScaling)MLBase
EPSILON_SVR enum value (defined in SVM)SVM
errorLog (defined in GRTBase)GRTBaseprotected
getBaseClassifier() const Classifier
getBaseType() const MLBase
getBestDistance() const Classifier
getC() const SVM
getClassDistances() const Classifier
getClassifierPointer() const Classifier
getClassifierType() const Classifier
getClassLabelIndexValue(UINT classLabel) const Classifier
getClassLabels() const Classifier
getClassLikelihoods() const Classifier
getClassType() const GRTBase
getCoef0() const SVM
getCrossValidationResult() const SVM
getDegree() const SVM
getGamma() const SVM
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getInputType() const MLBase
getIsAutoGammaEnabled() const SVM
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getIsCrossValidationTrainingEnabled() const SVM
getKernelType() const SVM
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in Classifier)Classifierinlineprotectedstatic
getMaximumLikelihood() const Classifier
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel() const (defined in SVM)SVMinline
Classifier::getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getModelTrained() const MLBase
getNu() const SVM
getNullRejectionCoeff() const Classifier
getNullRejectionEnabled() const Classifier
getNullRejectionThresholds() const Classifier
getNumClasses() const SVMvirtual
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPhase() const Classifier
getPredictedClassLabel() const Classifier
getRandomiseTrainingOrder() const MLBase
getRanges() const Classifier
getRegisteredClassifiers()Classifierstatic
getRootMeanSquaredTrainingError() const MLBase
getScalingEnabled() const MLBase
getSupportsNullRejection() const Classifier
getSVMType() const SVM
getTimeseriesCompatible() const Classifierinline
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingResults() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRTBase(void)GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
init(UINT kernelType, UINT svmType, bool useScaling, bool useNullRejection, bool useAutoGamma, Float gamma, UINT degree, Float coef0, Float nu, Float C, bool useCrossValidation, UINT kFoldValue)SVM
initDefaultSVMSettings()SVM
inputType (defined in MLBase)MLBaseprotected
kFoldValue (defined in SVM)SVMprotected
learningRate (defined in MLBase)MLBaseprotected
LINEAR_KERNEL enum value (defined in SVM)SVM
load(const std::string filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)Classifierprotected
loadLegacyModelFromFile(std::fstream &file)SVMprotected
loadModelFromFile(std::fstream &file)SVMvirtual
Classifier::loadModelFromFile(std::string filename)MLBasevirtual
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxLikelihood (defined in Classifier)Classifierprotected
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(void)MLBase
model (defined in SVM)SVMprotected
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
NU_SVC enum value (defined in SVM)SVM
NU_SVR enum value (defined in SVM)SVM
nullRejectionCoeff (defined in Classifier)Classifierprotected
nullRejectionThresholds (defined in Classifier)Classifierprotected
numClasses (defined in Classifier)Classifierprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
ONE_CLASS enum value (defined in SVM)SVM
operator=(const SVM &rhs)SVM
outputType (defined in MLBase)MLBaseprotected
param (defined in SVM)SVMprotected
phase (defined in Classifier)Classifierprotected
POLY_KERNEL enum value (defined in SVM)SVM
PRECOMPUTED_KERNEL enum value (defined in SVM)SVM
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)SVMvirtual
Classifier::predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictedClassLabel (defined in Classifier)Classifierprotected
predictSVM(VectorFloat &inputVector) (defined in SVM)SVMprotected
predictSVM(VectorFloat &inputVector, Float &maxProbability, VectorFloat &probabilites) (defined in SVM)SVMprotected
print() const MLBasevirtual
prob (defined in SVM)SVMprotected
problemSet (defined in SVM)SVMprotected
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
ranges (defined in Classifier)Classifierprotected
RBF_KERNEL enum value (defined in SVM)SVM
recomputeNullRejectionThresholds()Classifierinlinevirtual
registerModule (defined in SVM)SVMprotectedstatic
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()Classifiervirtual
rootMeanSquaredTrainingError (defined in MLBase)MLBaseprotected
save(const std::string filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const Classifierprotected
saveModelToFile(std::fstream &file) const SVMvirtual
Classifier::saveModelToFile(std::string filename) const MLBasevirtual
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)MLBaseinline
setC(const Float C)SVM
setCoef0(const Float coef0)SVM
setDegree(const UINT degree)SVM
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setGamma(const Float gamma)SVM
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setKernelType(const UINT kernelType)SVM
setKFoldCrossValidationValue(const UINT kFoldValue)SVM
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setNu(const Float nu)SVM
setNullRejectionCoeff(Float nullRejectionCoeff)Classifiervirtual
setNullRejectionThresholds(VectorFloat newRejectionThresholds)Classifiervirtual
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setSVMType(const UINT svmType)SVM
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SIGMOID_KERNEL enum value (defined in SVM)SVM
SQR(const Float &x) const (defined in GRTBase)GRTBaseinlineprotected
STANDARD_CLASSIFIER_MODE enum value (defined in Classifier)Classifierprotected
StringClassifierMap typedefClassifier
supportsNullRejection (defined in Classifier)Classifierprotected
SVM(UINT kernelType=LINEAR_KERNEL, UINT svmType=C_SVC, bool useScaling=true, bool useNullRejection=false, bool useAutoGamma=true, Float gamma=0.1, UINT degree=3, Float coef0=0, Float nu=0.5, Float C=1, bool useCrossValidation=false, UINT kFoldValue=10)SVM
SVM(const SVM &rhs)SVM
SVMKernelTypes enum name (defined in SVM)SVM
SVMTypes enum name (defined in SVM)SVM
testingLog (defined in GRTBase)GRTBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
TIMESERIES_CLASSIFIER_MODE enum value (defined in Classifier)Classifierprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)SVMvirtual
Classifier::train_(RegressionData &trainingData)MLBasevirtual
Classifier::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
Classifier::train_(ClassificationDataStream &trainingData)MLBasevirtual
Classifier::train_(UnlabelledData &trainingData)MLBasevirtual
Classifier::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in GRTBase)GRTBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
trainSVM() (defined in SVM)SVMprotected
useAutoGamma (defined in SVM)SVMprotected
useCrossValidation (defined in SVM)SVMprotected
useNullRejection (defined in Classifier)Classifierprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validateKernelType(UINT kernelType) (defined in SVM)SVMprotected
validateProblemAndParameters() (defined in SVM)SVMprotected
validateSVMType(UINT svmType) (defined in SVM)SVMprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~Classifier(void)Classifiervirtual
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~SVM()SVMvirtual