GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This is the complete list of members for SVM, including all inherited members.
BASE_TYPE_NOT_SET enum value (defined in MLBase) | MLBase | |
baseType (defined in MLBase) | MLBase | protected |
BaseTypes enum name (defined in MLBase) | MLBase | |
bestDistance (defined in Classifier) | Classifier | protected |
C_SVC enum value (defined in SVM) | SVM | |
classDistances (defined in Classifier) | Classifier | protected |
classificationThreshold (defined in SVM) | SVM | protected |
CLASSIFIER enum value (defined in MLBase) | MLBase | |
Classifier(void) | Classifier | |
classifierMode (defined in Classifier) | Classifier | protected |
ClassifierModes enum name (defined in Classifier) | Classifier | protected |
classifierType (defined in Classifier) | Classifier | protected |
classLabels (defined in Classifier) | Classifier | protected |
classLikelihoods (defined in Classifier) | Classifier | protected |
classType (defined in GRTBase) | GRTBase | protected |
clear() | SVM | virtual |
CLUSTERER enum value (defined in MLBase) | MLBase | |
convertClassificationDataToLIBSVMFormat(ClassificationData &trainingData) (defined in SVM) | SVM | protected |
copyBaseVariables(const Classifier *classifier) | Classifier | |
copyGRTBaseVariables(const GRTBase *GRTBase) | GRTBase | |
copyMLBaseVariables(const MLBase *mlBase) | MLBase | |
createInstanceFromString(std::string const &classifierType) | Classifier | static |
createNewInstance() const | Classifier | |
crossValidationResult (defined in SVM) | SVM | protected |
debugLog (defined in GRTBase) | GRTBase | protected |
deepCopy() const | Classifier | |
deepCopyFrom(const Classifier *classifier) | SVM | virtual |
deepCopyModel() const (defined in SVM) | SVM | protected |
deepCopyParam(const svm_parameter &source_param, svm_parameter &target_param) const (defined in SVM) | SVM | protected |
deepCopyProblem(const struct svm_problem &source_problem, struct svm_problem &target_problem, const unsigned int numInputDimensions) const (defined in SVM) | SVM | protected |
deleteProblemSet() (defined in SVM) | SVM | protected |
enableAutoGamma(const bool useAutoGamma) | SVM | |
enableCrossValidationTraining(const bool useCrossValidation) | SVM | |
enableNullRejection(bool useNullRejection) | Classifier | |
enableScaling(const bool useScaling) | MLBase | |
EPSILON_SVR enum value (defined in SVM) | SVM | |
errorLog (defined in GRTBase) | GRTBase | protected |
getBaseClassifier() const | Classifier | |
getBaseType() const | MLBase | |
getBestDistance() const | Classifier | |
getC() const | SVM | |
getClassDistances() const | Classifier | |
getClassifierPointer() const | Classifier | |
getClassifierType() const | Classifier | |
getClassLabelIndexValue(UINT classLabel) const | Classifier | |
getClassLabels() const | Classifier | |
getClassLikelihoods() const | Classifier | |
getClassType() const | GRTBase | |
getCoef0() const | SVM | |
getCrossValidationResult() const | SVM | |
getDegree() const | SVM | |
getGamma() const | SVM | |
getGRTBasePointer() | GRTBase | |
getGRTBasePointer() const | GRTBase | |
getGRTRevison() | GRTBase | static |
getGRTVersion(bool returnRevision=true) | GRTBase | static |
getInputType() const | MLBase | |
getIsAutoGammaEnabled() const | SVM | |
getIsBaseTypeClassifier() const | MLBase | |
getIsBaseTypeClusterer() const | MLBase | |
getIsBaseTypeRegressifier() const | MLBase | |
getIsCrossValidationTrainingEnabled() const | SVM | |
getKernelType() const | SVM | |
getLastErrorMessage() const | GRTBase | |
getLastInfoMessage() const | GRTBase | |
getLastWarningMessage() const | GRTBase | |
getLearningRate() const | MLBase | |
getMap() (defined in Classifier) | Classifier | inlineprotectedstatic |
getMaximumLikelihood() const | Classifier | |
getMaxNumEpochs() const | MLBase | |
getMinChange() const | MLBase | |
getMinNumEpochs() const | MLBase | |
getMLBasePointer() | MLBase | |
getMLBasePointer() const | MLBase | |
getModel() const (defined in SVM) | SVM | inline |
Classifier::getModel(std::ostream &stream) const | MLBase | virtual |
getModelAsString() const | MLBase | virtual |
getModelTrained() const | MLBase | |
getNu() const | SVM | |
getNullRejectionCoeff() const | Classifier | |
getNullRejectionEnabled() const | Classifier | |
getNullRejectionThresholds() const | Classifier | |
getNumClasses() const | SVM | virtual |
getNumInputDimensions() const | MLBase | |
getNumInputFeatures() const | MLBase | |
getNumOutputDimensions() const | MLBase | |
getNumTrainingIterationsToConverge() const | MLBase | |
getOutputType() const | MLBase | |
getPhase() const | Classifier | |
getPredictedClassLabel() const | Classifier | |
getRandomiseTrainingOrder() const | MLBase | |
getRanges() const | Classifier | |
getRegisteredClassifiers() | Classifier | static |
getRootMeanSquaredTrainingError() const | MLBase | |
getScalingEnabled() const | MLBase | |
getSupportsNullRejection() const | Classifier | |
getSVMType() const | SVM | |
getTimeseriesCompatible() const | Classifier | inline |
getTotalSquaredTrainingError() const | MLBase | |
getTrained() const | MLBase | |
getTrainingResults() const | MLBase | |
getUseValidationSet() const | MLBase | |
getValidationSetAccuracy() const | MLBase | |
getValidationSetPrecision() const | MLBase | |
getValidationSetRecall() const | MLBase | |
getValidationSetSize() const | MLBase | |
GRTBase(void) | GRTBase | |
infoLog (defined in GRTBase) | GRTBase | protected |
init(UINT kernelType, UINT svmType, bool useScaling, bool useNullRejection, bool useAutoGamma, Float gamma, UINT degree, Float coef0, Float nu, Float C, bool useCrossValidation, UINT kFoldValue) | SVM | |
initDefaultSVMSettings() | SVM | |
inputType (defined in MLBase) | MLBase | protected |
kFoldValue (defined in SVM) | SVM | protected |
learningRate (defined in MLBase) | MLBase | protected |
LINEAR_KERNEL enum value (defined in SVM) | SVM | |
load(const std::string filename) | MLBase | virtual |
loadBaseSettingsFromFile(std::fstream &file) | Classifier | protected |
loadLegacyModelFromFile(std::fstream &file) | SVM | protected |
loadModelFromFile(std::fstream &file) | SVM | virtual |
Classifier::loadModelFromFile(std::string filename) | MLBase | virtual |
map(VectorFloat inputVector) | MLBase | virtual |
map_(VectorFloat &inputVector) | MLBase | virtual |
maxLikelihood (defined in Classifier) | Classifier | protected |
maxNumEpochs (defined in MLBase) | MLBase | protected |
minChange (defined in MLBase) | MLBase | protected |
minNumEpochs (defined in MLBase) | MLBase | protected |
MLBase(void) | MLBase | |
model (defined in SVM) | SVM | protected |
notify(const TrainingResult &data) (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |
notifyTestResultsObservers(const TestInstanceResult &data) | MLBase | |
notifyTrainingResultsObservers(const TrainingResult &data) | MLBase | |
NU_SVC enum value (defined in SVM) | SVM | |
NU_SVR enum value (defined in SVM) | SVM | |
nullRejectionCoeff (defined in Classifier) | Classifier | protected |
nullRejectionThresholds (defined in Classifier) | Classifier | protected |
numClasses (defined in Classifier) | Classifier | protected |
numInputDimensions (defined in MLBase) | MLBase | protected |
numOutputDimensions (defined in MLBase) | MLBase | protected |
numTrainingIterationsToConverge (defined in MLBase) | MLBase | protected |
Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inline |
Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inline |
ONE_CLASS enum value (defined in SVM) | SVM | |
operator=(const SVM &rhs) | SVM | |
outputType (defined in MLBase) | MLBase | protected |
param (defined in SVM) | SVM | protected |
phase (defined in Classifier) | Classifier | protected |
POLY_KERNEL enum value (defined in SVM) | SVM | |
PRECOMPUTED_KERNEL enum value (defined in SVM) | SVM | |
predict(VectorFloat inputVector) | MLBase | virtual |
predict(MatrixFloat inputMatrix) | MLBase | virtual |
predict_(VectorFloat &inputVector) | SVM | virtual |
Classifier::predict_(MatrixFloat &inputMatrix) | MLBase | virtual |
predictedClassLabel (defined in Classifier) | Classifier | protected |
predictSVM(VectorFloat &inputVector) (defined in SVM) | SVM | protected |
predictSVM(VectorFloat &inputVector, Float &maxProbability, VectorFloat &probabilites) (defined in SVM) | SVM | protected |
print() const | MLBase | virtual |
prob (defined in SVM) | SVM | protected |
problemSet (defined in SVM) | SVM | protected |
random (defined in MLBase) | MLBase | protected |
randomiseTrainingOrder (defined in MLBase) | MLBase | protected |
ranges (defined in Classifier) | Classifier | protected |
RBF_KERNEL enum value (defined in SVM) | SVM | |
recomputeNullRejectionThresholds() | Classifier | inlinevirtual |
registerModule (defined in SVM) | SVM | protectedstatic |
registerTestResultsObserver(Observer< TestInstanceResult > &observer) | MLBase | |
registerTrainingResultsObserver(Observer< TrainingResult > &observer) | MLBase | |
REGRESSIFIER enum value (defined in MLBase) | MLBase | |
removeAllTestObservers() | MLBase | |
removeAllTrainingObservers() | MLBase | |
removeTestResultsObserver(const Observer< TestInstanceResult > &observer) | MLBase | |
removeTrainingResultsObserver(const Observer< TrainingResult > &observer) | MLBase | |
reset() | Classifier | virtual |
rootMeanSquaredTrainingError (defined in MLBase) | MLBase | protected |
save(const std::string filename) const | MLBase | virtual |
saveBaseSettingsToFile(std::fstream &file) const | Classifier | protected |
saveModelToFile(std::fstream &file) const | SVM | virtual |
Classifier::saveModelToFile(std::string filename) const | MLBase | virtual |
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) | MLBase | inline |
setC(const Float C) | SVM | |
setCoef0(const Float coef0) | SVM | |
setDegree(const UINT degree) | SVM | |
setErrorLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setGamma(const Float gamma) | SVM | |
setInfoLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setKernelType(const UINT kernelType) | SVM | |
setKFoldCrossValidationValue(const UINT kFoldValue) | SVM | |
setLearningRate(const Float learningRate) | MLBase | |
setMaxNumEpochs(const UINT maxNumEpochs) | MLBase | |
setMinChange(const Float minChange) | MLBase | |
setMinNumEpochs(const UINT minNumEpochs) | MLBase | |
setNu(const Float nu) | SVM | |
setNullRejectionCoeff(Float nullRejectionCoeff) | Classifier | virtual |
setNullRejectionThresholds(VectorFloat newRejectionThresholds) | Classifier | virtual |
setRandomiseTrainingOrder(const bool randomiseTrainingOrder) | MLBase | |
setSVMType(const UINT svmType) | SVM | |
setTrainingLoggingEnabled(const bool loggingEnabled) | MLBase | |
setUseValidationSet(const bool useValidationSet) | MLBase | |
setValidationSetSize(const UINT validationSetSize) | MLBase | |
setWarningLoggingEnabled(const bool loggingEnabled) | GRTBase | |
SIGMOID_KERNEL enum value (defined in SVM) | SVM | |
SQR(const Float &x) const (defined in GRTBase) | GRTBase | inlineprotected |
STANDARD_CLASSIFIER_MODE enum value (defined in Classifier) | Classifier | protected |
StringClassifierMap typedef | Classifier | |
supportsNullRejection (defined in Classifier) | Classifier | protected |
SVM(UINT kernelType=LINEAR_KERNEL, UINT svmType=C_SVC, bool useScaling=true, bool useNullRejection=false, bool useAutoGamma=true, Float gamma=0.1, UINT degree=3, Float coef0=0, Float nu=0.5, Float C=1, bool useCrossValidation=false, UINT kFoldValue=10) | SVM | |
SVM(const SVM &rhs) | SVM | |
SVMKernelTypes enum name (defined in SVM) | SVM | |
SVMTypes enum name (defined in SVM) | SVM | |
testingLog (defined in GRTBase) | GRTBase | protected |
testResultsObserverManager (defined in MLBase) | MLBase | protected |
TIMESERIES_CLASSIFIER_MODE enum value (defined in Classifier) | Classifier | protected |
totalSquaredTrainingError (defined in MLBase) | MLBase | protected |
train(ClassificationData trainingData) | MLBase | virtual |
train(RegressionData trainingData) | MLBase | virtual |
train(TimeSeriesClassificationData trainingData) | MLBase | virtual |
train(ClassificationDataStream trainingData) | MLBase | virtual |
train(UnlabelledData trainingData) | MLBase | virtual |
train(MatrixFloat data) | MLBase | virtual |
train_(ClassificationData &trainingData) | SVM | virtual |
Classifier::train_(RegressionData &trainingData) | MLBase | virtual |
Classifier::train_(TimeSeriesClassificationData &trainingData) | MLBase | virtual |
Classifier::train_(ClassificationDataStream &trainingData) | MLBase | virtual |
Classifier::train_(UnlabelledData &trainingData) | MLBase | virtual |
Classifier::train_(MatrixFloat &data) | MLBase | virtual |
trained (defined in MLBase) | MLBase | protected |
trainingLog (defined in GRTBase) | GRTBase | protected |
trainingResults (defined in MLBase) | MLBase | protected |
trainingResultsObserverManager (defined in MLBase) | MLBase | protected |
trainSVM() (defined in SVM) | SVM | protected |
useAutoGamma (defined in SVM) | SVM | protected |
useCrossValidation (defined in SVM) | SVM | protected |
useNullRejection (defined in Classifier) | Classifier | protected |
useScaling (defined in MLBase) | MLBase | protected |
useValidationSet (defined in MLBase) | MLBase | protected |
validateKernelType(UINT kernelType) (defined in SVM) | SVM | protected |
validateProblemAndParameters() (defined in SVM) | SVM | protected |
validateSVMType(UINT svmType) (defined in SVM) | SVM | protected |
validationSetAccuracy (defined in MLBase) | MLBase | protected |
validationSetPrecision (defined in MLBase) | MLBase | protected |
validationSetRecall (defined in MLBase) | MLBase | protected |
validationSetSize (defined in MLBase) | MLBase | protected |
warningLog (defined in GRTBase) | GRTBase | protected |
~Classifier(void) | Classifier | virtual |
~GRTBase(void) | GRTBase | virtual |
~MLBase(void) | MLBase | virtual |
~Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
~Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |
~SVM() | SVM | virtual |