GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <HMM.h>
Public Member Functions | |
HMM (const UINT hmmType=HMM_CONTINUOUS, const UINT modelType=HMM_LEFTRIGHT, const UINT delta=1, const bool useScaling=false, const bool useNullRejection=false) | |
HMM (const HMM &rhs) | |
virtual | ~HMM (void) |
HMM & | operator= (const HMM &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict_ (MatrixFloat ×eries) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | print () const |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
UINT | getHMMType () const |
UINT | getModelType () const |
UINT | getDelta () const |
UINT | getNumStates () const |
UINT | getNumSymbols () const |
UINT | getNumRandomTrainingIterations () const |
Vector< DiscreteHiddenMarkovModel > | getDiscreteModels () const |
Vector< ContinuousHiddenMarkovModel > | getContinuousModels () const |
bool | setHMMType (const UINT hmmType) |
bool | setModelType (const UINT modelType) |
bool | setDelta (const UINT delta) |
bool | setDownsampleFactor (const UINT downsampleFactor) |
bool | setCommitteeSize (const UINT committeeSize) |
bool | setNumStates (const UINT numStates) |
bool | setNumSymbols (const UINT numStates) |
bool | setNumRandomTrainingIterations (const UINT numRandomTrainingIterations) |
bool | setSigma (const Float sigma) |
bool | setAutoEstimateSigma (const bool autoEstimateSigma) |
Public Member Functions inherited from Classifier | |
Classifier (void) | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (bool useNullRejection) |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
virtual bool | recomputeNullRejectionThresholds () |
bool | getTimeseriesCompatible () const |
Classifier * | createNewInstance () const |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | train_discrete (TimeSeriesClassificationData &trainingData) |
bool | train_continuous (TimeSeriesClassificationData &trainingData) |
bool | predict_discrete (VectorFloat &inputVector) |
bool | predict_continuous (VectorFloat &inputVector) |
bool | predict_discrete (MatrixFloat ×eries) |
bool | predict_continuous (MatrixFloat ×eries) |
bool | convertDataToObservationSequence (TimeSeriesClassificationData &classData, Vector< Vector< UINT > > &observationSequences) |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
UINT | hmmType |
Controls if this is a HMM_DISCRETE or a HMM_CONTINUOUS. | |
UINT | modelType |
UINT | delta |
UINT | numStates |
UINT | numSymbols |
UINT | numRandomTrainingIterations |
Vector< DiscreteHiddenMarkovModel > | discreteModels |
UINT | downsampleFactor |
UINT | committeeSize |
Float | sigma |
bool | autoEstimateSigma |
Vector< ContinuousHiddenMarkovModel > | continuousModels |
Protected Attributes inherited from Classifier | |
std::string | classifierType |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterClassifierModule< HMM > | registerModule |
Additional Inherited Members | |
Public Types inherited from Classifier | |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Classifier | |
static Classifier * | createInstanceFromString (std::string const &classifierType) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
HMM::HMM | ( | const UINT | hmmType = HMM_CONTINUOUS , |
const UINT | modelType = HMM_LEFTRIGHT , |
||
const UINT | delta = 1 , |
||
const bool | useScaling = false , |
||
const bool | useNullRejection = false |
||
) |
Default Constructor.
Sets up the HMM instance with default parameters.
hmmType | sets the HMM type, this should be either HMM_DISCRETE or HMM_CONTINUOUS. Default: HMM_CONTINUOUS |
modelType | sets the model type used by either the discrete or continuous hmm. This should be either HMM_ERGODIC or HMM_LEFTRIGHT. Default: HMM_LEFTRIGHT |
delta | sets the number of states a model can transistion to for a HMM_LEFTRIGHT model. Default: 1 |
useScaling | sets if the training/input data should be scaled to the range [0 1]. Default: false |
useNullRejection | sets if the algorithm should use null rejection (i.e., automatically gesture spotting). Default: false |
HMM::HMM | ( | const HMM & | rhs | ) |
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an HMM instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another HMM instance |
Reimplemented from Classifier.
Vector< ContinuousHiddenMarkovModel > HMM::getContinuousModels | ( | ) | const |
UINT HMM::getDelta | ( | ) | const |
Vector< DiscreteHiddenMarkovModel > HMM::getDiscreteModels | ( | ) | const |
UINT HMM::getHMMType | ( | ) | const |
UINT HMM::getModelType | ( | ) | const |
UINT HMM::getNumRandomTrainingIterations | ( | ) | const |
This function gets the number of random training iterations used to train each discrete HMM.
The accuracy of the Baum Welch algorithm can be effected by the starting values of the A, B, and PI matrices. The HMM algorithm therefore tries several different starting values and then continues to train the algorithm with the best settings.
The number of random training iterations parameter therefore controls the number of different starting values.
UINT HMM::getNumStates | ( | ) | const |
UINT HMM::getNumSymbols | ( | ) | const |
|
virtual |
This loads a trained HMM model from a file. This overrides the loadModelFromFile function in the Classifier base class.
file | a reference to the file the HMM model will be loaded from |
Reimplemented from MLBase.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input Vector to classify |
Reimplemented from MLBase.
|
virtual |
This predicts the class of the timeseries. This overrides the predict function in the Classifier base class.
timeSeries | the input timeseries to classify |
Reimplemented from MLBase.
|
virtual |
This is the main print interface for all the GRT machine learning algorithms. This should be overwritten by the derived class. It will print the model and settings to the display log.
Reimplemented from MLBase.
|
virtual |
This resets the HMM classifier.
Reimplemented from Classifier.
|
virtual |
This saves the trained HMM model to a file. This overrides the saveModelToFile function in the Classifier base class.
file | a reference to the file the HMM model will be saved to |
Reimplemented from MLBase.
bool HMM::setCommitteeSize | ( | const UINT | committeeSize | ) |
This function sets the committeeSize used for a HMM_CONTINUOUS. The commitee size controls the number of votes used to make a prediction for a continuous HMM. For example, if the committeeSize is 5, then the top 5 estimations will be combined togethere
The parameter must be greater than zero. This will NOT clear any trained model.
committeeSize | the committeeSize used for a continuous HMM |
bool HMM::setDelta | ( | const UINT | delta | ) |
This function sets the delta parameter in each HMM.
The delta value controls how many states a model can transition to if the LEFTRIGHT model type is used.
The parameter must be greater than zero.
This will clear any trained model.
delta | the delta parameter used for each HMM |
bool HMM::setDownsampleFactor | ( | const UINT | downsampleFactor | ) |
This function sets the downsample factor used for a HMM_CONTINUOUS. The downsample factor controls the resampling of each training timeseries for the continuous HMM. A downsample factor of 5, for instance, will result in each timeseries being resized (smaller) by a factor of 5. Increasing the downsample factor will significantly increase the realtime prediction time for each model, however, setting this value too high may reduce the overall accuracy of the model.
The parameter must be greater than zero. This will clear any trained model.
downsampleFactor | the downsample factor used for a continuous HMM |
bool HMM::setHMMType | ( | const UINT | hmmType | ) |
bool HMM::setModelType | ( | const UINT | modelType | ) |
bool HMM::setNumRandomTrainingIterations | ( | const UINT | numRandomTrainingIterations | ) |
This function sets the number of random training iterations used to train each HMM.
The accuracy of the Baum Welch algorithm can be effected by the starting values of the A, B, and PI matrices. The HMM algorithm therefore tries several different starting values and then continues to train the algorithm with the best settings. The number of random training iterations parameter therefore controls the number of different starting values.
This will clear any trained model.
numRandomTrainingIterations | the number of random training iterations used to train each HMM |
bool HMM::setNumStates | ( | const UINT | numStates | ) |
This function sets the number of states for a HMM_DISCRETE.
The parameter must be greater than zero. This will clear any trained model.
numStates | the number of states in each HMM |
bool HMM::setNumSymbols | ( | const UINT | numStates | ) |
This function sets the number of symbols for a HMM_DISCRETE. The parameter must be greater than zero. This will clear any trained model.
symbols | the number of symbols in each HMM |
bool HMM::setSigma | ( | const Float | sigma | ) |
This function sets the sigma parameter used for HMM_CONTINUOUS.
Sigma controls the width of the Gaussian distance function that estimates the similarity between the input sample and the model.
Modifing sigma will NOT clear the trained model, enabling the user to tune this parameter when needed.
Sigma must be greater than zero.
sigma | the new sigma parameter |
|
virtual |
This overrides the train function in the Classifier base class. It simply prints a warning message stating that the bool train(LabelledTimeSeriesClassificationData trainingData) function should be used to train the HMM model.
trainingData | a reference to the training data |
Reimplemented from MLBase.
|
virtual |
This trains the HMM model, using the labelled timeseries classification data. This is the main training function for the HMM class. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.