GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <ContinuousHiddenMarkovModel.h>
Public Member Functions | |
ContinuousHiddenMarkovModel (const UINT downsampleFactor=5, const UINT delta=1, const bool autoEstimateSigma=true, const Float sigma=10.0) | |
ContinuousHiddenMarkovModel (const ContinuousHiddenMarkovModel &rhs) | |
ContinuousHiddenMarkovModel & | operator= (const ContinuousHiddenMarkovModel &rhs) |
virtual bool | predict_ (VectorFloat &x) |
virtual bool | predict_ (MatrixFloat &obs) |
virtual bool | train_ (TimeSeriesClassificationSample &trainingData) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
virtual bool | print () const |
UINT | getNumStates () const |
UINT | getClassLabel () const |
Float | getLoglikelihood () const |
Float | getPhase () const |
Vector< UINT > | getEstimatedStates () const |
MatrixFloat | getAlpha () const |
bool | setDownsampleFactor (const UINT downsampleFactor) |
bool | setModelType (const UINT modelType) |
bool | setDelta (const UINT delta) |
bool | setSigma (const Float sigma) |
bool | setAutoEstimateSigma (const bool autoEstimateSigma) |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
Float | gauss (const MatrixFloat &x, const MatrixFloat &y, const MatrixFloat &sigma, const unsigned int i, const unsigned int j, const unsigned int N) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
UINT | downsampleFactor |
UINT | numStates |
The number of states for this model. | |
UINT | classLabel |
The class label associated with this model. | |
UINT | timeseriesLength |
The length of the training timeseries. | |
bool | autoEstimateSigma |
Float | sigma |
Float | phase |
MatrixFloat | a |
The transitions probability matrix. | |
MatrixFloat | b |
The emissions probability matrix. | |
VectorFloat | pi |
The state start probability vector. | |
MatrixFloat | alpha |
VectorFloat | c |
CircularBuffer< VectorFloat > | observationSequence |
A buffer to store data for realtime prediction. | |
MatrixFloat | obsSequence |
Vector< UINT > | estimatedStates |
The estimated states for prediction. | |
MatrixFloat | sigmaStates |
The sigma value for each state. | |
UINT | modelType |
The model type (LEFTRIGHT, or ERGODIC) | |
UINT | delta |
The number of states a model can move to in a LEFTRIGHT model. | |
Float | loglikelihood |
The log likelihood of an observation sequence given the modal, calculated by the forward method. | |
Float | cThreshold |
The classification threshold for this model. | |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 40 of file ContinuousHiddenMarkovModel.h.
|
virtual |
This is the main clear interface for all the GRT machine learning algorithms. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from MLBase.
Definition at line 385 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This loads a trained model from a file.
file | a reference to the file the model will be loaded from |
Reimplemented from MLBase.
Definition at line 580 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This is the main prediction interface for all the GRT machine learning algorithms. This should be overwritten by the derived class.
inputVector | a reference to the input vector for prediction |
Reimplemented from MLBase.
Definition at line 110 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This is the prediction interface for time series data. This should be overwritten by the derived class.
inputMatrix | a reference to the new input matrix for prediction |
Reimplemented from MLBase.
Definition at line 135 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This is the main print interface for all the GRT machine learning algorithms. This should be overwritten by the derived class. It will print the model and settings to the display log.
Reimplemented from MLBase.
Definition at line 406 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This is the main reset interface for all the GRT machine learning algorithms. It should be used to reset the model (i.e. set all values back to default settings). If you want to completely clear the model (i.e. clear any learned weights or values) then you should use the clear function.
Reimplemented from MLBase.
Definition at line 371 of file ContinuousHiddenMarkovModel.cpp.
|
virtual |
This saves the trained model to a file.
file | a reference to the file the model will be saved to |
Reimplemented from MLBase.
Definition at line 515 of file ContinuousHiddenMarkovModel.cpp.
bool ContinuousHiddenMarkovModel::setDelta | ( | const UINT | delta | ) |
This function sets the delta parameter in each HMM.
The delta value controls how many states a model can transition to if the LEFTRIGHT model type is used.
The parameter must be greater than zero.
This will clear any trained model.
const | UINT delta: the delta parameter used for each CHMM |
Definition at line 475 of file ContinuousHiddenMarkovModel.cpp.
bool ContinuousHiddenMarkovModel::setModelType | ( | const UINT | modelType | ) |
This function sets the modelType used for each HMM. This should be one of the HMM modelType enums.
This will clear any trained model.
const | UINT modelType: the modelType in each HMM |
Definition at line 465 of file ContinuousHiddenMarkovModel.cpp.