GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
MLP Member List

This is the complete list of members for MLP, including all inherited members.

activationFunctionFromString(const std::string activationName) const MLP
activationFunctionToString(const Neuron::Type activationFunction) const MLP
back_prop(const VectorFloat &inputVector, const VectorFloat &targetVector, const Float alpha, const Float beta)MLPprotected
BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
checkForNAN() const MLP
classIdGRTBaseprotected
classificationModeActive (defined in MLP)MLPprotected
CLASSIFIER enum value (defined in MLBase)MLBase
classLikelihoods (defined in MLP)MLPprotected
clear()MLPvirtual
CLUSTERER enum value (defined in MLBase)MLBase
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in MLBase)MLBaseprotected
copyBaseVariables(const Regressifier *regressifier)Regressifier
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
create(const std::string &id)Regressifierstatic
create() const Regressifier
debugLog (defined in GRTBase)GRTBaseprotected
deepCopy() const Regressifier
deepCopyFrom(const Regressifier *regressifier)MLPvirtual
deltaH (defined in MLP)MLPprotected
deltaO (defined in MLP)MLPprotected
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
feedforward(VectorFloat data)MLPprotected
feedforward(const VectorFloat &data, VectorFloat &inputNeuronsOutput, VectorFloat &hiddenNeuronsOutput, VectorFloat &outputNeuronsOutput)MLPprotected
gamma (defined in MLP)MLPprotected
getBaseRegressifier() const Regressifier
getBatchSize() const MLBase
getClassDistances() const MLP
getClassificationModeActive() const MLP
getClassLikelihoods() const MLP
getConverged() const MLBase
getGamma() const MLP
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getHiddenLayer() const MLP
getHiddenLayerActivationFunction() const MLP
getId()MLPstatic
Regressifier::getId() const GRTBase
getInputLayer() const MLP
getInputLayerActivationFunction() const MLP
getInputRanges() const Regressifier
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in Regressifier)Regressifierinlineprotectedstatic
getMaximumLikelihood() const MLP
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getMomentum() const MLP
getNullRejectionCoeff() const MLP
getNullRejectionEnabled() const MLP
getNullRejectionThreshold() const MLP
getNumClasses() const MLP
getNumHiddenNeurons() const MLP
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumInputNeurons() const MLP
getNumOutputDimensions() const MLBase
getNumOutputNeurons() const MLP
getNumRandomTrainingIterations() const MLP
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputLayer() const MLP
getOutputLayerActivationFunction() const MLP
getOutputRanges() const Regressifier
getOutputType() const MLBase
getPredictedClassLabel() const MLP
getRandomiseTrainingOrder() const MLBase
getRegisteredRegressifiers()Regressifierstatic
getRegressionData() const Regressifier
getRegressionModeActive() const MLP
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getTestingLoggingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingError() const MLP
getTrainingLog() const MLP
getTrainingLoggingEnabled() const MLBase
getTrainingRate() const MLP
getTrainingResults() const MLBase
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("setNumRandomTrainingIterations() is deprecated, use setNumRestarts() instead", bool setNumRandomTrainingIterations(const UINT numRandomTrainingIterations))MLP
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create() instead.", Regressifier *createNewInstance() const ) (defined in Regressifier)Regressifier
GRT_DEPRECATED_MSG("createInstanceFromString(id) is deprecated, use create(id) instead.", static Regressifier *createInstanceFromString(const std::string &id)) (defined in Regressifier)Regressifier
GRT_DEPRECATED_MSG("getRegressifierType is deprecated, use getId() instead", std::string getRegressifierType() const ) (defined in Regressifier)Regressifier
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
hiddenLayer (defined in MLP)MLPprotected
hiddenLayerActivationFunction (defined in MLP)MLPprotected
hiddenNeuronsOutput (defined in MLP)MLPprotected
infoLog (defined in GRTBase)GRTBaseprotected
init(const UINT numInputNeurons, const UINT numHiddenNeurons, const UINT numOutputNeurons)MLP
init(const UINT numInputNeurons, const UINT numHiddenNeurons, const UINT numOutputNeurons, const Neuron::Type inputLayerActivationFunction, const Neuron::Type hiddenLayerActivationFunction, const Neuron::Type outputLayerActivationFunction)MLP
initialized (defined in MLP)MLPprotected
inputLayer (defined in MLP)MLPprotected
inputLayerActivationFunction (defined in MLP)MLPprotected
inputNeuronsOutput (defined in MLP)MLPprotected
inputType (defined in MLBase)MLBaseprotected
inputVectorRanges (defined in Regressifier)Regressifierprotected
isNAN(const Float &v) const (defined in MLP)MLPinlineprotected
learningRate (defined in MLBase)MLBaseprotected
load(std::fstream &file)MLPvirtual
Regressifier::load(const std::string &filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)Regressifierprotected
loadLegacyModelFromFile(std::fstream &file) (defined in MLP)MLPprotected
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxLikelihood (defined in MLP)MLPprotected
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
MLP()MLP
MLP(const MLP &rhs)MLP
momentum (defined in MLP)MLPprotected
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
nullRejectionCoeff (defined in MLP)MLPprotected
nullRejectionThreshold (defined in MLP)MLPprotected
numHiddenNeurons (defined in MLP)MLPprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numInputNeurons (defined in MLP)MLPprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numOutputNeurons (defined in MLP)MLPprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
ONLINE_GRADIENT_DESCENT enum value (defined in MLP)MLP
operator=(const MLP &rhs)MLP
outputLayer (defined in MLP)MLPprotected
outputLayerActivationFunction (defined in MLP)MLPprotected
outputNeuronsOutput (defined in MLP)MLPprotected
outputTargets (defined in MLP)MLPprotected
outputType (defined in MLBase)MLBaseprotected
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)MLPvirtual
Regressifier::predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictedClassLabel (defined in MLP)MLPprotected
print() const MLPvirtual
printNetwork() const MLP
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
Regressifier(const std::string &id="")Regressifier
regressifierType (defined in Regressifier)Regressifierprotected
regressionData (defined in Regressifier)Regressifierprotected
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset() overrideRegressifiervirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(std::fstream &file) const MLPvirtual
Regressifier::save(const std::string &filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const Regressifierprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
setBatchSize(const UINT batchSize)MLBase
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setGamma(const Float gamma)MLP
setHiddenLayerActivationFunction(const Neuron::Type activationFunction)MLP
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setInputLayerActivationFunction(const Neuron::Type activationFunction)MLP
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setMomentum(const Float momentum)MLP
setNullRejection(const bool useNullRejection)MLP
setNullRejectionCoeff(const Float nullRejectionCoeff)MLP
setNumRestarts(const UINT numRestarts)MLBase
setOutputLayerActivationFunction(const Neuron::Type activationFunction)MLP
setOutputTargets() (defined in MLP)MLPprotected
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingRate(const Float trainingRate)MLP
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
StringRegressifierMap typedefRegressifier
targetVectorRanges (defined in Regressifier)Regressifierprotected
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)MLPvirtual
train_(RegressionData &trainingData)MLPvirtual
Regressifier::train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
Regressifier::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
Regressifier::train_(ClassificationDataStream &trainingData)MLBasevirtual
Regressifier::train_(UnlabelledData &trainingData)MLBasevirtual
Regressifier::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
TrainingAlgorithm enum name (defined in MLP)MLP
trainingError (defined in MLP)MLPprotected
trainingErrorLog (defined in MLP)MLPprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingMode (defined in MLP)MLPprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
trainModel(RegressionData &trainingData) (defined in MLP)MLPprotected
trainOnlineGradientDescentClassification(const RegressionData &trainingData, const RegressionData &validationData) (defined in MLP)MLPprotected
trainOnlineGradientDescentRegression(const RegressionData &trainingData, const RegressionData &validationData) (defined in MLP)MLPprotected
useNullRejection (defined in MLP)MLPprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validateActivationFunction(const Neuron::Type avactivationFunction) const MLP
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~MLP()MLPvirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~Regressifier(void)Regressifiervirtual