GestureRecognitionToolkit
Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This is the complete list of members for LinearRegression, including all inherited members.
BASE_TYPE_NOT_SET enum value (defined in MLBase) | MLBase | |
BaseType enum name (defined in MLBase) | MLBase | |
baseType (defined in MLBase) | MLBase | protected |
batchSize (defined in MLBase) | MLBase | protected |
classId | GRTBase | protected |
CLASSIFIER enum value (defined in MLBase) | MLBase | |
clear() override | Regressifier | virtual |
CLUSTERER enum value (defined in MLBase) | MLBase | |
CONTEXT enum value (defined in MLBase) | MLBase | |
converged (defined in MLBase) | MLBase | protected |
copyBaseVariables(const Regressifier *regressifier) | Regressifier | |
copyGRTBaseVariables(const GRTBase *GRTBase) | GRTBase | |
copyMLBaseVariables(const MLBase *mlBase) | MLBase | |
create(const std::string &id) | Regressifier | static |
create() const | Regressifier | |
debugLog (defined in GRTBase) | GRTBase | protected |
deepCopy() const | Regressifier | |
deepCopyFrom(const Regressifier *regressifier) | LinearRegression | virtual |
enableScaling(const bool useScaling) | MLBase | |
errorLog (defined in GRTBase) | GRTBase | protected |
FEATURE_EXTRACTION enum value (defined in MLBase) | MLBase | |
getBaseRegressifier() const | Regressifier | |
getBatchSize() const | MLBase | |
getConverged() const | MLBase | |
getGRTBasePointer() | GRTBase | |
getGRTBasePointer() const | GRTBase | |
getGRTRevison() | GRTBase | static |
getGRTVersion(bool returnRevision=true) | GRTBase | static |
getId() | LinearRegression | static |
Regressifier::getId() const | GRTBase | |
getInputRanges() const | Regressifier | |
getInputType() const | MLBase | |
getIsBaseTypeClassifier() const | MLBase | |
getIsBaseTypeClusterer() const | MLBase | |
getIsBaseTypeRegressifier() const | MLBase | |
getLastErrorMessage() const | GRTBase | |
getLastInfoMessage() const | GRTBase | |
getLastWarningMessage() const | GRTBase | |
getLearningRate() const | MLBase | |
getMap() (defined in Regressifier) | Regressifier | inlineprotectedstatic |
getMaxNumEpochs() const | MLBase | |
getMaxNumIterations() const | LinearRegression | |
getMinChange() const | MLBase | |
getMinNumEpochs() const | MLBase | |
getMLBasePointer() | MLBase | |
getMLBasePointer() const | MLBase | |
getModel(std::ostream &stream) const | MLBase | virtual |
getModelAsString() const | MLBase | virtual |
getNumInputDimensions() const | MLBase | |
getNumInputFeatures() const | MLBase | |
getNumOutputDimensions() const | MLBase | |
getNumRestarts() const | MLBase | |
getNumTrainingIterationsToConverge() const | MLBase | |
getOutputRanges() const | Regressifier | |
getOutputType() const | MLBase | |
getRandomiseTrainingOrder() const | MLBase | |
getRegisteredRegressifiers() | Regressifier | static |
getRegressionData() const | Regressifier | |
getRMSTrainingError() const | MLBase | |
getRMSValidationError() const | MLBase | |
getScalingEnabled() const | MLBase | |
getTestingLoggingEnabled() const | MLBase | |
getTotalSquaredTrainingError() const | MLBase | |
getTrained() const | MLBase | |
getTrainingLoggingEnabled() const | MLBase | |
getTrainingResults() const | MLBase | |
getType() const | MLBase | |
getUseValidationSet() const | MLBase | |
getValidationSetAccuracy() const | MLBase | |
getValidationSetPrecision() const | MLBase | |
getValidationSetRecall() const | MLBase | |
getValidationSetSize() const | MLBase | |
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create() instead.", Regressifier *createNewInstance() const ) (defined in Regressifier) | Regressifier | |
GRT_DEPRECATED_MSG("createInstanceFromString(id) is deprecated, use create(id) instead.", static Regressifier *createInstanceFromString(const std::string &id)) (defined in Regressifier) | Regressifier | |
GRT_DEPRECATED_MSG("getRegressifierType is deprecated, use getId() instead", std::string getRegressifierType() const ) (defined in Regressifier) | Regressifier | |
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const ) | MLBase | |
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | MLBase | |
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename)) | MLBase | |
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | MLBase | |
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const ) | MLBase | |
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const ) | MLBase | |
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const ) | GRTBase | |
GRTBase(const std::string &id="") | GRTBase | |
infoLog (defined in GRTBase) | GRTBase | protected |
inputType (defined in MLBase) | MLBase | protected |
inputVectorRanges (defined in Regressifier) | Regressifier | protected |
learningRate (defined in MLBase) | MLBase | protected |
LinearRegression(bool useScaling=false) | LinearRegression | |
LinearRegression(const LinearRegression &rhs) | LinearRegression | |
load(std::fstream &file) | LinearRegression | virtual |
Regressifier::load(const std::string &filename) | MLBase | virtual |
loadBaseSettingsFromFile(std::fstream &file) | Regressifier | protected |
loadLegacyModelFromFile(std::fstream &file) | LinearRegression | protected |
map(VectorFloat inputVector) | MLBase | virtual |
map_(VectorFloat &inputVector) | MLBase | virtual |
maxNumEpochs (defined in MLBase) | MLBase | protected |
minChange (defined in MLBase) | MLBase | protected |
minNumEpochs (defined in MLBase) | MLBase | protected |
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET) | MLBase | |
notify(const TrainingResult &data) (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |
notifyTestResultsObservers(const TestInstanceResult &data) | MLBase | |
notifyTrainingResultsObservers(const TrainingResult &data) | MLBase | |
numInputDimensions (defined in MLBase) | MLBase | protected |
numOutputDimensions (defined in MLBase) | MLBase | protected |
numRestarts (defined in MLBase) | MLBase | protected |
numTrainingIterationsToConverge (defined in MLBase) | MLBase | protected |
Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inline |
Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inline |
operator=(const LinearRegression &rhs) | LinearRegression | |
outputType (defined in MLBase) | MLBase | protected |
POST_PROCESSING enum value (defined in MLBase) | MLBase | |
PRE_PROCSSING enum value (defined in MLBase) | MLBase | |
predict(VectorFloat inputVector) | MLBase | virtual |
predict(MatrixFloat inputMatrix) | MLBase | virtual |
predict_(VectorFloat &inputVector) | LinearRegression | virtual |
Regressifier::predict_(MatrixFloat &inputMatrix) | MLBase | virtual |
print() const | MLBase | virtual |
random (defined in MLBase) | MLBase | protected |
randomiseTrainingOrder (defined in MLBase) | MLBase | protected |
registerTestResultsObserver(Observer< TestInstanceResult > &observer) | MLBase | |
registerTrainingResultsObserver(Observer< TrainingResult > &observer) | MLBase | |
REGRESSIFIER enum value (defined in MLBase) | MLBase | |
Regressifier(const std::string &id="") | Regressifier | |
regressifierType (defined in Regressifier) | Regressifier | protected |
regressionData (defined in Regressifier) | Regressifier | protected |
removeAllTestObservers() | MLBase | |
removeAllTrainingObservers() | MLBase | |
removeTestResultsObserver(const Observer< TestInstanceResult > &observer) | MLBase | |
removeTrainingResultsObserver(const Observer< TrainingResult > &observer) | MLBase | |
reset() override | Regressifier | virtual |
rmsTrainingError (defined in MLBase) | MLBase | protected |
rmsValidationError (defined in MLBase) | MLBase | protected |
save(std::fstream &file) const | LinearRegression | virtual |
Regressifier::save(const std::string &filename) const | MLBase | virtual |
saveBaseSettingsToFile(std::fstream &file) const | Regressifier | protected |
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) | GRTBase | inline |
setBatchSize(const UINT batchSize) | MLBase | |
setDebugLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setErrorLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setInfoLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setLearningRate(const Float learningRate) | MLBase | |
setMaxNumEpochs(const UINT maxNumEpochs) | MLBase | |
setMaxNumIterations(const UINT maxNumIterations) | LinearRegression | |
setMinChange(const Float minChange) | MLBase | |
setMinNumEpochs(const UINT minNumEpochs) | MLBase | |
setNumRestarts(const UINT numRestarts) | MLBase | |
setRandomiseTrainingOrder(const bool randomiseTrainingOrder) | MLBase | |
setTestingLoggingEnabled(const bool loggingEnabled) | MLBase | |
setTrainingLoggingEnabled(const bool loggingEnabled) | MLBase | |
setUseValidationSet(const bool useValidationSet) | MLBase | |
setValidationSetSize(const UINT validationSetSize) | MLBase | |
setWarningLoggingEnabled(const bool loggingEnabled) | GRTBase | |
SQR(const Float &x) const (defined in GRTBase) | GRTBase | inline |
StringRegressifierMap typedef | Regressifier | |
targetVectorRanges (defined in Regressifier) | Regressifier | protected |
testingLog (defined in MLBase) | MLBase | protected |
testResultsObserverManager (defined in MLBase) | MLBase | protected |
totalSquaredTrainingError (defined in MLBase) | MLBase | protected |
train(ClassificationData trainingData) | MLBase | virtual |
train(RegressionData trainingData) | MLBase | virtual |
train(RegressionData trainingData, RegressionData validationData) | MLBase | virtual |
train(TimeSeriesClassificationData trainingData) | MLBase | virtual |
train(ClassificationDataStream trainingData) | MLBase | virtual |
train(UnlabelledData trainingData) | MLBase | virtual |
train(MatrixFloat data) | MLBase | virtual |
train_(RegressionData &trainingData) | LinearRegression | virtual |
Regressifier::train_(ClassificationData &trainingData) | MLBase | virtual |
Regressifier::train_(RegressionData &trainingData, RegressionData &validationData) | MLBase | virtual |
Regressifier::train_(TimeSeriesClassificationData &trainingData) | MLBase | virtual |
Regressifier::train_(ClassificationDataStream &trainingData) | MLBase | virtual |
Regressifier::train_(UnlabelledData &trainingData) | MLBase | virtual |
Regressifier::train_(MatrixFloat &data) | MLBase | virtual |
trained (defined in MLBase) | MLBase | protected |
trainingLog (defined in MLBase) | MLBase | protected |
trainingResults (defined in MLBase) | MLBase | protected |
trainingResultsObserverManager (defined in MLBase) | MLBase | protected |
useScaling (defined in MLBase) | MLBase | protected |
useValidationSet (defined in MLBase) | MLBase | protected |
validationSetAccuracy (defined in MLBase) | MLBase | protected |
validationSetPrecision (defined in MLBase) | MLBase | protected |
validationSetRecall (defined in MLBase) | MLBase | protected |
validationSetSize (defined in MLBase) | MLBase | protected |
w (defined in LinearRegression) | LinearRegression | protected |
w0 (defined in LinearRegression) | LinearRegression | protected |
warningLog (defined in GRTBase) | GRTBase | protected |
~GRTBase(void) | GRTBase | virtual |
~LinearRegression(void) | LinearRegression | virtual |
~MLBase(void) | MLBase | virtual |
~Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
~Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |
~Regressifier(void) | Regressifier | virtual |