GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
KMeans Member List

This is the complete list of members for KMeans, including all inherited members.

assign (defined in KMeans)KMeansprotected
BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
bestDistance (defined in Clusterer)Clustererprotected
calculateTheta(const MatrixFloat &data) (defined in KMeans)KMeansprotected
classIdGRTBaseprotected
CLASSIFIER enum value (defined in MLBase)MLBase
clear()KMeansvirtual
clusterDistances (defined in Clusterer)Clustererprotected
Clusterer(const std::string &id="")Clusterer
CLUSTERER enum value (defined in MLBase)MLBase
clusterLabels (defined in Clusterer)Clustererprotected
clusterLikelihoods (defined in Clusterer)Clustererprotected
clusters (defined in KMeans)KMeansprotected
computeTheta (defined in KMeans)KMeansprotected
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in Clusterer)Clustererprotected
copyBaseVariables(const Clusterer *clusterer)Clusterer
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
count (defined in KMeans)KMeansprotected
create(std::string const &id)Clustererstatic
create() const Clusterer
debugLog (defined in GRTBase)GRTBaseprotected
deepCopy() const Clusterer
deepCopyFrom(const Clusterer *clusterer)KMeansvirtual
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
estep(const MatrixFloat &data) (defined in KMeans)KMeansprotected
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
finalTheta (defined in KMeans)KMeansprotected
getBaseClusterer() const Clusterer
getBatchSize() const MLBase
getBestDistance() const Clusterer
getClassCountVector() const (defined in KMeans)KMeansinline
getClassLabelsVector() const (defined in KMeans)KMeansinline
getClusterDistances() const Clusterer
getClusterLabels() const Clusterer
getClusterLikelihoods() const Clusterer
getClusters() const (defined in KMeans)KMeansinline
getConverged() const MLBase
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getId()KMeansstatic
Clusterer::getId() const GRTBase
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in Clusterer)Clustererinlineprotectedstatic
getMaximumLikelihood() const Clusterer
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getModelTrained() (defined in KMeans)KMeansinline
getNumClusters() const Clusterer
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPredictedClusterLabel() const Clusterer
getRandomiseTrainingOrder() const MLBase
getRegisteredClusterers()Clustererstatic
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getTestingLoggingEnabled() const MLBase
getTheta() (defined in KMeans)KMeansinline
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingLoggingEnabled() const MLBase
getTrainingResults() const MLBase
getTrainingThetaLog() const (defined in KMeans)KMeansinline
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("getClustererType() is deprecated, use getId() or getBaseId() instead", std::string getClustererType() const ) (defined in Clusterer)Clusterer
GRT_DEPRECATED_MSG("createNewInstance is deprecated, use create instead.", Clusterer *createNewInstance() const ) (defined in Clusterer)Clusterer
GRT_DEPRECATED_MSG("createInstanceFromString is deprecated, use create instead.", static Clusterer *createInstanceFromString(const std::string &id)) (defined in Clusterer)Clusterer
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
MLBase::GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
MLBase::GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
MLBase::GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
MLBase::GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
inputType (defined in MLBase)MLBaseprotected
KMeans(const UINT numClusters=10, const UINT minNumEpochs=5, const UINT maxNumEpochs=1000, const Float minChange=1.0e-5, const bool computeTheta=true)KMeans
KMeans(const KMeans &rhs)KMeans
learningRate (defined in MLBase)MLBaseprotected
load(const std::string &filename)MLBasevirtual
load(std::fstream &file)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprotected
loadClustererSettingsFromFile(std::fstream &file)Clustererprotected
loadModelFromFile(std::fstream &file)KMeansvirtual
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxLikelihood (defined in Clusterer)Clustererprotected
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
mstep(const MatrixFloat &data) (defined in KMeans)KMeansprotected
nchgKMeansprotected
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numClustersClustererprotected
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
numTrainingSamplesKMeansprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator=(const KMeans &rhs)KMeans
outputType (defined in MLBase)MLBaseprotected
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)KMeansvirtual
Clusterer::predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictedClusterLabelClustererprotected
print() const MLBasevirtual
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
ranges (defined in Clusterer)Clustererprotected
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()KMeansvirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(const std::string &filename) const MLBasevirtual
save(std::fstream &file) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprotected
saveClustererSettingsToFile(std::fstream &file) const Clustererprotected
saveModelToFile(std::fstream &file) const KMeansvirtual
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
setBatchSize(const UINT batchSize)MLBase
setClusters(const MatrixFloat &clusters)KMeans
setComputeTheta(const bool computeTheta) (defined in KMeans)KMeans
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setNumClusters(const UINT numClusters)Clusterer
setNumRestarts(const UINT numRestarts)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float a) (defined in KMeans)KMeansinlineprotected
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
StringClustererMap typedefClusterer
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
thetaTracker (defined in KMeans)KMeansprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(MatrixFloat &data)KMeansvirtual
train_(ClassificationData &trainingData)KMeansvirtual
train_(UnlabelledData &trainingData)KMeansvirtual
MLBase::train_(RegressionData &trainingData)MLBasevirtual
MLBase::train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
MLBase::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
MLBase::train_(ClassificationDataStream &trainingData)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
trainModel(MatrixFloat &data)KMeans
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~Clusterer(void)Clusterervirtual
~GRTBase(void)GRTBasevirtual
~KMeans()KMeansvirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual