GestureRecognitionToolkit  Version: 0.2.5
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
EvolutionaryAlgorithm< INDIVIDUAL > Member List

This is the complete list of members for EvolutionaryAlgorithm< INDIVIDUAL >, including all inherited members.

accumSumLookup (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
baiseCoeff (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
baiseWeights (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
BaseType enum name (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
batchSize (defined in MLBase)MLBaseprotected
bestIndividualFitness (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
bestIndividualIndex (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
classIdGRTBaseprotected
CLASSIFIER enum value (defined in MLBase)MLBase
clear()MLBasevirtual
CLUSTERER enum value (defined in MLBase)MLBase
CONTEXT enum value (defined in MLBase)MLBase
converged (defined in MLBase)MLBaseprotected
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
customConvergenceCheck() (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
debugLog (defined in GRTBase)GRTBaseprotected
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
estimatePopulationFitness(const MatrixFloat &trainingData, Float &bestFitness, UINT &bestIndex)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
evaluateFitness(INDIVIDUAL &individual, const MatrixFloat &trainingData)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
EvolutionaryAlgorithm(const UINT populationSize=0, const UINT geneSize=0)EvolutionaryAlgorithm< INDIVIDUAL >inline
evolvePopulation()EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
FEATURE_EXTRACTION enum value (defined in MLBase)MLBase
fitnessHistory (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
generateRandomGeneValue() (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
geneSize (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
getBatchSize() const MLBase
getConverged() const MLBase
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getId() const GRTBase
getInitialized() const (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumRestarts() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPopulation() const (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
getPopulationSize() const (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
getRandomiseTrainingOrder() const MLBase
getRMSTrainingError() const MLBase
getRMSValidationError() const MLBase
getScalingEnabled() const MLBase
getTestingLoggingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingLoggingEnabled() const MLBase
getTrainingResults() const MLBase
getType() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRT_DEPRECATED_MSG("saveModelToFile(std::string filename) is deprecated, use save(const std::string &filename) instead", virtual bool saveModelToFile(const std::string &filename) const )MLBase
GRT_DEPRECATED_MSG("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const )MLBase
GRT_DEPRECATED_MSG("loadModelFromFile(std::string filename) is deprecated, use load(const std::string &filename) instead", virtual bool loadModelFromFile(const std::string &filename))MLBase
GRT_DEPRECATED_MSG("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file))MLBase
GRT_DEPRECATED_MSG("getRootMeanSquaredTrainingError() is deprecated, use getRMSTrainingError() instead", Float getRootMeanSquaredTrainingError() const )MLBase
GRT_DEPRECATED_MSG("getModelTrained() is deprecated, use getTrained() instead", bool getModelTrained() const )MLBase
GRTBase::GRT_DEPRECATED_MSG("getClassType is deprecated, use getId() instead!", std::string getClassType() const )GRTBase
GRTBase(const std::string &id="")GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
initialized (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
initPopulation(const UINT populationSize, const UINT geneSize)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
inputType (defined in MLBase)MLBaseprotected
learningRate (defined in MLBase)MLBaseprotected
load(const std::string &filename)MLBasevirtual
load(std::fstream &file)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprotected
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxIteration (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
minNumEpochs (defined in MLBase)MLBaseprotected
minNumIterationsNoChange (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
MLBase(const std::string &id="", const BaseType type=BASE_TYPE_NOT_SET)MLBase
mutationRate (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRestarts (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator[](const UINT &index)EvolutionaryAlgorithm< INDIVIDUAL >inline
outputType (defined in MLBase)MLBaseprotected
parents (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
population (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
populationHistory (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
populationSize (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
populationWeights (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
POST_PROCESSING enum value (defined in MLBase)MLBase
PRE_PROCSSING enum value (defined in MLBase)MLBase
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)MLBasevirtual
predict_(MatrixFloat &inputMatrix)MLBasevirtual
print() const MLBasevirtual
printBest() const (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
rand (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()MLBasevirtual
rmsTrainingError (defined in MLBase)MLBaseprotected
rmsValidationError (defined in MLBase)MLBaseprotected
save(const std::string &filename) const MLBasevirtual
save(std::fstream &file) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)GRTBaseinline
setBaiseCoeff(const Float baiseCoeff) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setBaiseWeights(const bool baiseWeights) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setBatchSize(const UINT batchSize)MLBase
setDebugLoggingEnabled(const bool loggingEnabled)GRTBase
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxIterations(const UINT maxIteration) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setMinNumEpochs(const UINT minNumEpochs)MLBase
setMinNumIterationsNoChange(const UINT minNumIterationsNoChange) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setMutationRate(const Float mutationRate) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setNumRestarts(const UINT numRestarts)MLBase
setPopulation(const Vector< INDIVIDUAL > &newPopulation) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
setPopulationSize(const UINT populationSize) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setStoreHistory(const bool storeHistory) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setStoreRate(const UINT storeRate) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inline
setTestingLoggingEnabled(const bool loggingEnabled)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinline
storeHistory (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
storeRate (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
testingLog (defined in MLBase)MLBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(const MatrixFloat &trainingData) (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
MLBase::train(ClassificationData trainingData)MLBasevirtual
MLBase::train(RegressionData trainingData)MLBasevirtual
MLBase::train(RegressionData trainingData, RegressionData validationData)MLBasevirtual
MLBase::train(TimeSeriesClassificationData trainingData)MLBasevirtual
MLBase::train(ClassificationDataStream trainingData)MLBasevirtual
MLBase::train(UnlabelledData trainingData)MLBasevirtual
MLBase::train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)MLBasevirtual
train_(RegressionData &trainingData)MLBasevirtual
train_(RegressionData &trainingData, RegressionData &validationData)MLBasevirtual
train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
train_(ClassificationDataStream &trainingData)MLBasevirtual
train_(UnlabelledData &trainingData)MLBasevirtual
train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in MLBase)MLBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
useElitism (defined in EvolutionaryAlgorithm< INDIVIDUAL >)EvolutionaryAlgorithm< INDIVIDUAL >
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~EvolutionaryAlgorithm()EvolutionaryAlgorithm< INDIVIDUAL >inlinevirtual
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual