GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <WeightedAverageFilter.h>
Public Member Functions | |
WeightedAverageFilter (UINT filterSize=5, UINT numDimensions=1) | |
WeightedAverageFilter (const WeightedAverageFilter &rhs) | |
virtual | ~WeightedAverageFilter () |
WeightedAverageFilter & | operator= (const WeightedAverageFilter &rhs) |
virtual bool | deepCopyFrom (const PreProcessing *preProcessing) |
virtual bool | process (const VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | init (UINT filterSize, UINT numDimensions) |
Float | filter (const Float x) |
VectorFloat | filter (const VectorFloat &x) |
UINT | getFilterSize () const |
VectorFloat | getFilteredData () const |
Public Member Functions inherited from PreProcessing | |
PreProcessing (void) | |
virtual | ~PreProcessing (void) |
bool | copyBaseVariables (const PreProcessing *preProcessingModule) |
virtual bool | clear () |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
std::string | getPreProcessingType () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
VectorFloat | getProcessedData () const |
PreProcessing * | createNewInstance () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | filterSize |
The size of the filter. | |
UINT | inputSampleCounter |
A counter to keep track of the number of input samples. | |
CircularBuffer< VectorFloat > | dataBuffer |
A buffer to store the previous N values, N = filterSize. | |
VectorFloat | weights |
Stores the weights for each sample in the buffer, the size of this vector will match the filterSize. | |
Protected Attributes inherited from PreProcessing | |
std::string | preProcessingType |
bool | initialized |
VectorFloat | processedData |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterPreProcessingModule< WeightedAverageFilter > | registerModule |
Additional Inherited Members | |
Public Types inherited from PreProcessing | |
typedef std::map< std::string, PreProcessing *(*)() > | StringPreProcessingMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from PreProcessing | |
static PreProcessing * | createInstanceFromString (std::string const &preProcessingType) |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions inherited from PreProcessing | |
bool | init () |
bool | savePreProcessingSettingsToFile (std::fstream &file) const |
bool | loadPreProcessingSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Static Protected Member Functions inherited from PreProcessing | |
static StringPreProcessingMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 37 of file WeightedAverageFilter.h.
WeightedAverageFilter::WeightedAverageFilter | ( | UINT | filterSize = 5 , |
UINT | numDimensions = 1 |
||
) |
Constructor, sets the size of the filter and the dimensionality of the data it will filter.
filterSize | the size of the weighted average filter, should be a value greater than zero. Default filterSize = 5 |
numDimensions | the dimensionality of the data to filter. Default numDimensions = 1 |
Definition at line 28 of file WeightedAverageFilter.cpp.
WeightedAverageFilter::WeightedAverageFilter | ( | const WeightedAverageFilter & | rhs | ) |
Copy Constructor, copies the WeightedAverageFilter from the rhs instance to this instance
rhs | another instance of the WeightedAverageFilter class from which the data will be copied to this instance |
Definition at line 38 of file WeightedAverageFilter.cpp.
|
virtual |
Default Destructor
Definition at line 54 of file WeightedAverageFilter.cpp.
|
virtual |
Sets the PreProcessing deepCopyFrom function, overwriting the base PreProcessing function. This function is used to deep copy the values from the input pointer to this instance of the PreProcessing module. This function is called by the GestureRecognitionPipeline when the user adds a new PreProcessing module to the pipeline.
preProcessing | a pointer to another instance of a WeightedAverageFilter, the values of that instance will be cloned to this instance |
Reimplemented from PreProcessing.
Definition at line 78 of file WeightedAverageFilter.cpp.
Float WeightedAverageFilter::filter | ( | const Float | x | ) |
Filters the input, this should only be called if the dimensionality of the filter was set to 1.
x | the value to filter, this should only be called if the dimensionality of the filter was set to 1 |
Definition at line 219 of file WeightedAverageFilter.cpp.
VectorFloat WeightedAverageFilter::filter | ( | const VectorFloat & | x | ) |
Filters the input, the dimensionality of the input vector should match that of the filter.
x | the values to filter, the dimensionality of the input vector should match that of the filter |
Definition at line 233 of file WeightedAverageFilter.cpp.
|
inline |
Returns the last value(s) that were filtered.
Definition at line 150 of file WeightedAverageFilter.h.
|
inline |
Gets the current filter size.
Definition at line 144 of file WeightedAverageFilter.h.
bool WeightedAverageFilter::init | ( | UINT | filterSize, |
UINT | numDimensions | ||
) |
Initializes the filter, setting the filter size and dimensionality of the data it will filter. Sets all the filter values to zero.
filterSize | the size of the moving average filter, should be a value greater than zero |
Definition at line 181 of file WeightedAverageFilter.cpp.
|
virtual |
This loads the WeightedAverageFilter settings from a file. This overrides the loadModelFromFile function in the PreProcessing base class.
file | a reference to the file to load the settings from |
Reimplemented from PreProcessing.
Definition at line 136 of file WeightedAverageFilter.cpp.
WeightedAverageFilter & WeightedAverageFilter::operator= | ( | const WeightedAverageFilter & | rhs | ) |
Sets the equals operator, copies the data from the rhs instance to this instance
rhs | another instance of the WeightedAverageFilter class from which the data will be copied to this instance |
Definition at line 58 of file WeightedAverageFilter.cpp.
|
virtual |
Sets the PreProcessing process function, overwriting the base PreProcessing function. This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This function calls the WeightedAverageFilter's filter function.
inputVector | the inputVector that should be processed. Must have the same dimensionality as the PreProcessing module |
Reimplemented from PreProcessing.
Definition at line 96 of file WeightedAverageFilter.cpp.
|
virtual |
Sets the PreProcessing reset function, overwriting the base PreProcessing function. This function is called by the GestureRecognitionPipeline when the pipelines main reset() function is called. This function resets the filter values by re-initiliazing the filter.
Reimplemented from PreProcessing.
Definition at line 115 of file WeightedAverageFilter.cpp.
|
virtual |
This saves the current settings of the WeightedAverageFilter to a file. This overrides the saveModelToFile function in the PreProcessing base class.
file | a reference to the file the settings will be saved to |
Reimplemented from PreProcessing.
Definition at line 120 of file WeightedAverageFilter.cpp.