GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Types | |
enum | NetworkTypology { RANDOM_NETWORK =0 } |
Public Types inherited from Clusterer | |
typedef std::map< std::string, Clusterer *(*)() > | StringClustererMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Public Member Functions | |
SelfOrganizingMap (const UINT networkSize=20, const UINT networkTypology=RANDOM_NETWORK, const UINT maxNumEpochs=1000, const Float alphaStart=0.8, const Float alphaEnd=0.1) | |
SelfOrganizingMap (const SelfOrganizingMap &rhs) | |
virtual | ~SelfOrganizingMap () |
SelfOrganizingMap & | operator= (const SelfOrganizingMap &rhs) |
virtual bool | deepCopyFrom (const Clusterer *clusterer) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | train_ (MatrixFloat &trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | map_ (VectorFloat &x) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | validateNetworkTypology (const UINT networkTypology) |
UINT | getNetworkSize () const |
Float | getAlphaStart () const |
Float | getAlphaEnd () const |
VectorFloat | getMappedData () const |
Vector< GaussNeuron > | getNeurons () const |
const Vector< GaussNeuron > & | getNeuronsRef () const |
MatrixFloat | getNetworkWeights () const |
bool | setNetworkSize (const UINT networkSize) |
bool | setNetworkTypology (const UINT networkTypology) |
bool | setAlphaStart (const Float alphaStart) |
bool | setAlphaEnd (const Float alphaEnd) |
Public Member Functions inherited from Clusterer | |
Clusterer (void) | |
virtual | ~Clusterer (void) |
bool | copyBaseVariables (const Clusterer *clusterer) |
bool | getConverged () const |
UINT | getNumClusters () const |
UINT | getPredictedClusterLabel () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
VectorFloat | getClusterLikelihoods () const |
VectorFloat | getClusterDistances () const |
Vector< UINT > | getClusterLabels () const |
std::string | getClustererType () const |
bool | setNumClusters (const UINT numClusters) |
Clusterer * | createNewInstance () const |
Clusterer * | deepCopy () const |
const Clusterer & | getBaseClusterer () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | networkTypology |
Float | alphaStart |
Float | alphaEnd |
VectorFloat | mappedData |
Vector< GaussNeuron > | neurons |
MatrixFloat | networkWeights |
Protected Attributes inherited from Clusterer | |
std::string | clustererType |
UINT | numClusters |
Number of clusters in the model. | |
UINT | predictedClusterLabel |
Stores the predicted cluster label from the most recent predict( ) | |
Float | maxLikelihood |
Float | bestDistance |
VectorFloat | clusterLikelihoods |
VectorFloat | clusterDistances |
Vector< UINT > | clusterLabels |
bool | converged |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Static Public Member Functions inherited from Clusterer | |
static Clusterer * | createInstanceFromString (std::string const &ClustererType) |
static Vector< std::string > | getRegisteredClusterers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Member Functions inherited from Clusterer | |
bool | saveClustererSettingsToFile (std::fstream &file) const |
bool | loadClustererSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Static Protected Member Functions inherited from Clusterer | |
static StringClustererMap * | getMap () |
Definition at line 197 of file SelfOrganizingMap.h.
SelfOrganizingMap::SelfOrganizingMap | ( | const UINT | networkSize = 20 , |
const UINT | networkTypology = RANDOM_NETWORK , |
||
const UINT | maxNumEpochs = 1000 , |
||
const Float | alphaStart = 0.8 , |
||
const Float | alphaEnd = 0.1 |
||
) |
Default Constructor.
Definition at line 28 of file SelfOrganizingMap.cpp.
SelfOrganizingMap::SelfOrganizingMap | ( | const SelfOrganizingMap & | rhs | ) |
Defines how the data from the rhs SelfOrganizingMap should be copied to this SelfOrganizingMap
rhs | another instance of a SelfOrganizingMap |
Definition at line 44 of file SelfOrganizingMap.cpp.
|
virtual |
Default Destructor.
Definition at line 64 of file SelfOrganizingMap.cpp.
|
virtual |
This function clears the Clusterer module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Clusterer.
Definition at line 110 of file SelfOrganizingMap.cpp.
|
virtual |
This deep copies the variables and models from the Clusterer pointer to this SelfOrganizingMap instance. This overrides the base deep copy function for the Clusterer modules.
clusterer | a pointer to the Clusterer base class, this should be pointing to another SelfOrganizingMap instance |
Reimplemented from Clusterer.
Definition at line 83 of file SelfOrganizingMap.cpp.
UINT SelfOrganizingMap::getNetworkSize | ( | ) | const |
This function returns the size of the SOM network. This is the same as the number of clusters in the network.
const | UINT networkTypology: the network typology you want to test |
Definition at line 440 of file SelfOrganizingMap.cpp.
|
virtual |
This loads a trained SOM model from a file. This overrides the loadModelFromFile function in the base class.
file | a reference to the file the SOM model will be loaded from |
Reimplemented from MLBase.
Definition at line 361 of file SelfOrganizingMap.cpp.
|
virtual |
This function maps the input Vector x by reference through the self organizing map. The function will return true if the mapping was successful. The mapped data can then be accessed via the getMappedData function. You need to train the SOM model before you can use this function. Because the data is mapped by reference, the x input data might be modified by the map (if it has to scale the input data for example).
x | the input Vector for mapping |
Reimplemented from MLBase.
Definition at line 298 of file SelfOrganizingMap.cpp.
SelfOrganizingMap & SelfOrganizingMap::operator= | ( | const SelfOrganizingMap & | rhs | ) |
Defines how the data from the rhs SelfOrganizingMap should be copied to this SelfOrganizingMap
rhs | another instance of a SelfOrganizingMap |
Definition at line 68 of file SelfOrganizingMap.cpp.
|
virtual |
|
virtual |
This saves the trained SOM model to a file. This overrides the saveModelToFile function in the base class.
file | a reference to the file the SOM model will be saved to |
Reimplemented from MLBase.
Definition at line 320 of file SelfOrganizingMap.cpp.
|
virtual |
This is the main training interface for referenced MatrixFloat data. It overrides the train_ function in the ML base class. This function runs the main training algorithm and is called by all the other train and train_ functions.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 122 of file SelfOrganizingMap.cpp.
|
virtual |
This is the main training interface for reference ClassificationData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 288 of file SelfOrganizingMap.cpp.
|
virtual |
This is the main training interface for reference UnlabelledData data. It overrides the trainInplace function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 293 of file SelfOrganizingMap.cpp.
bool SelfOrganizingMap::validateNetworkTypology | ( | const UINT | networkTypology | ) |
This function validates the network typology to ensure it is one of the NetworkTypology enums.
networkTypology | the network typology you want to test |
Definition at line 432 of file SelfOrganizingMap.cpp.