GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <RegressionTree.h>
Public Member Functions | |
RegressionTree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const UINT trainingMode=BEST_ITERATIVE_SPILT, const bool useScaling=false, const Float minRMSErrorPerNode=0.01) | |
RegressionTree (const RegressionTree &rhs) | |
virtual | ~RegressionTree (void) |
RegressionTree & | operator= (const RegressionTree &rhs) |
virtual bool | deepCopyFrom (const Regressifier *regressifier) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | print () const |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
RegressionTreeNode * | deepCopyTree () const |
const RegressionTreeNode * | getTree () const |
Float | getMinRMSErrorPerNode () const |
bool | setMinRMSErrorPerNode (const Float minRMSErrorPerNode) |
Public Member Functions inherited from Tree | |
Tree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const UINT trainingMode=BEST_ITERATIVE_SPILT) | |
virtual | ~Tree (void) |
virtual bool | getModel (std::ostream &stream) const |
const Node * | getTree () const |
UINT | getTrainingMode () const |
UINT | getNumSplittingSteps () const |
UINT | getMinNumSamplesPerNode () const |
UINT | getMaxDepth () const |
UINT | getPredictedNodeID () const |
bool | getRemoveFeaturesAtEachSpilt () const |
bool | setTrainingMode (const UINT trainingMode) |
bool | setNumSplittingSteps (const UINT numSplittingSteps) |
bool | setMinNumSamplesPerNode (const UINT minNumSamplesPerNode) |
bool | setMaxDepth (const UINT maxDepth) |
bool | setRemoveFeaturesAtEachSpilt (const bool removeFeaturesAtEachSpilt) |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Regressifier | |
Regressifier (void) | |
virtual | ~Regressifier (void) |
bool | copyBaseVariables (const Regressifier *regressifier) |
virtual bool | reset () |
std::string | getRegressifierType () const |
VectorFloat | getRegressionData () const |
Vector< MinMax > | getInputRanges () const |
Vector< MinMax > | getOutputRanges () const |
Regressifier * | createNewInstance () const |
Regressifier * | deepCopy () const |
const Regressifier & | getBaseRegressifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
RegressionTreeNode * | buildTree (const RegressionData &trainingData, RegressionTreeNode *parent, Vector< UINT > features, UINT nodeID) |
bool | computeBestSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeBestSpiltBestIterativeSpilt (const RegressionData &trainingData, const Vector< UINT > &features, UINT &featureIndex, Float &threshold, Float &minError) |
bool | computeNodeRegressionData (const RegressionData &trainingData, VectorFloat ®ressionData) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Member Functions inherited from Regressifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
Float | minRMSErrorPerNode |
<Tell the compiler we are using the base class predict method to stop hidden virtual function warnings | |
Protected Attributes inherited from Tree | |
UINT | trainingMode |
UINT | numSplittingSteps |
UINT | minNumSamplesPerNode |
UINT | maxDepth |
bool | removeFeaturesAtEachSpilt |
Node * | tree |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Protected Attributes inherited from Regressifier | |
std::string | regressifierType |
VectorFloat | regressionData |
Vector< MinMax > | inputVectorRanges |
Vector< MinMax > | targetVectorRanges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Static Protected Attributes | |
static RegisterRegressifierModule< RegressionTree > | registerModule |
Additional Inherited Members | |
Public Types inherited from Tree | |
enum | TrainingMode { BEST_ITERATIVE_SPILT =0, BEST_RANDOM_SPLIT, NUM_TRAINING_MODES } |
Public Types inherited from Regressifier | |
typedef std::map< std::string, Regressifier *(*)() > | StringRegressifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Public Member Functions inherited from Regressifier | |
static Regressifier * | createInstanceFromString (const std::string ®ressifierType) |
static Vector< std::string > | getRegisteredRegressifiers () |
Static Protected Member Functions inherited from Regressifier | |
static StringRegressifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 40 of file RegressionTree.h.
RegressionTree::RegressionTree | ( | const UINT | numSplittingSteps = 100 , |
const UINT | minNumSamplesPerNode = 5 , |
||
const UINT | maxDepth = 10 , |
||
const bool | removeFeaturesAtEachSpilt = false , |
||
const UINT | trainingMode = BEST_ITERATIVE_SPILT , |
||
const bool | useScaling = false , |
||
const Float | minRMSErrorPerNode = 0.01 |
||
) |
Default Constructor
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. Default value = 100 |
minNumSamplesPerNode | sets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5 |
maxDepth | sets the maximum depth of the tree. Default value = 10 |
removeFeaturesAtEachSpilt | sets if a feature is removed at each spilt so it can not be used again. Default value = false |
trainingMode | sets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT |
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
minRMSErrorPerNode | sets the minimum RMS error that allowed per node, if the RMS error is below that, the node will become a leafNode. Default value = 0.01 |
Definition at line 31 of file RegressionTree.cpp.
RegressionTree::RegressionTree | ( | const RegressionTree & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 50 of file RegressionTree.cpp.
|
virtual |
Default Destructor
Definition at line 61 of file RegressionTree.cpp.
|
virtual |
This overrides the clear function in the Regressifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Tree.
Definition at line 196 of file RegressionTree.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Regressifier pointer (which should be pointing to an RegressionTree instance) into this instance
regressifier | a pointer to the Regressifier Base Class, this should be pointing to another RegressionTree instance |
Reimplemented from Regressifier.
Definition at line 89 of file RegressionTree.cpp.
|
virtual |
Deep copies the regression tree, returning a pointer to the new regression tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.
Reimplemented from Tree.
Definition at line 345 of file RegressionTree.cpp.
Float RegressionTree::getMinRMSErrorPerNode | ( | ) | const |
Gets the minimum root mean squared error value that needs to be exceeded for the tree to continue growing at a specific node. If the RMS error is below this value then the node will be made into a leaf node.
Definition at line 358 of file RegressionTree.cpp.
const RegressionTreeNode * RegressionTree::getTree | ( | ) | const |
Gets a pointer to the regression tree. NULL will be returned if the decision tree model has not be trained.
Definition at line 354 of file RegressionTree.cpp.
|
virtual |
This loads a trained RegressionTree model from a file. This overrides the loadModelFromFile function in the Regressifier base class.
file | a reference to the file the RegressionTree model will be loaded from |
Reimplemented from MLBase.
Definition at line 251 of file RegressionTree.cpp.
RegressionTree & RegressionTree::operator= | ( | const RegressionTree & | rhs | ) |
Defines how the data from the rhs RegressionTree should be copied to this RegressionTree
rhs | another instance of a RegressionTree |
Definition at line 66 of file RegressionTree.cpp.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Regressifier base class.
inputVector | the input Vector to predict |
Reimplemented from MLBase.
Definition at line 165 of file RegressionTree.cpp.
|
virtual |
Prints the tree to std::cout.
Reimplemented from Tree.
Definition at line 210 of file RegressionTree.cpp.
|
virtual |
This saves the trained RegressionTree model to a file. This overrides the saveModelToFile function in the Regressifier base class.
file | a reference to the file the RegressionTree model will be saved to |
Reimplemented from MLBase.
Definition at line 216 of file RegressionTree.cpp.
bool RegressionTree::setMinRMSErrorPerNode | ( | const Float | minRMSErrorPerNode | ) |
Sets the minimum RMS error that needs to be exceeded for the tree to continue growing at a specific node.
minRMSErrorPerNode | sets the minRMSErrorPerNode parameter |
Definition at line 362 of file RegressionTree.cpp.
|
virtual |
This trains the RegressionTree model, using the labelled regression data. This overrides the train function in the Regressifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 118 of file RegressionTree.cpp.