GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <RadialBasisFunction.h>
Public Member Functions | |
RadialBasisFunction (UINT numSteps=100, Float positiveClassificationThreshold=0.9, Float minAlphaSearchRange=0.001, Float maxAlphaSearchRange=1.0) | |
virtual | ~RadialBasisFunction () |
RadialBasisFunction (const RadialBasisFunction &rhs) | |
RadialBasisFunction & | operator= (const RadialBasisFunction &rhs) |
virtual bool | deepCopyFrom (const WeakClassifier *weakClassifer) |
virtual bool | train (ClassificationData &trainingData, VectorFloat &weights) |
virtual Float | predict (const VectorFloat &x) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
virtual void | print () const |
UINT | getNumSteps () const |
Float | getPositiveClassificationThreshold () const |
Float | getAlpha () const |
Float | getMinAlphaSearchRange () const |
Float | getMaxAlphaSearchRange () const |
VectorFloat | getRBFCentre () const |
Public Member Functions inherited from WeakClassifier | |
WeakClassifier () | |
virtual | ~WeakClassifier () |
WeakClassifier (const WeakClassifier &rhs) | |
WeakClassifier & | operator= (const WeakClassifier &rhs) |
bool | copyBaseVariables (const WeakClassifier *weakClassifer) |
virtual Float | getPositiveClassLabel () const |
virtual Float | getNegativeClassLabel () const |
std::string | getWeakClassifierType () const |
bool | getTrained () const |
UINT | getNumInputDimensions () const |
WeakClassifier * | createNewInstance () const |
Protected Member Functions | |
Float | rbf (const VectorFloat &a, const VectorFloat &b) |
Protected Attributes | |
UINT | numSteps |
Float | positiveClassificationThreshold |
Float | alpha |
Float | gamma |
Float | minAlphaSearchRange |
Float | maxAlphaSearchRange |
VectorFloat | rbfCentre |
Protected Attributes inherited from WeakClassifier | |
std::string | weakClassifierType |
A string that represents the weak classifier type, e.g. DecisionStump. | |
bool | trained |
A flag to show if the weak classifier model has been trained. | |
UINT | numInputDimensions |
The number of input dimensions to the weak classifier. | |
TrainingLog | trainingLog |
ErrorLog | errorLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterWeakClassifierModule< RadialBasisFunction > | registerModule |
This is used to register the DecisionStump with the WeakClassifier base class. | |
Additional Inherited Members | |
Public Types inherited from WeakClassifier | |
typedef std::map< std::string, WeakClassifier *(*)() > | StringWeakClassifierMap |
Static Public Member Functions inherited from WeakClassifier | |
static WeakClassifier * | createInstanceFromString (std::string const &weakClassifierType) |
Static Protected Member Functions inherited from WeakClassifier | |
static StringWeakClassifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 40 of file RadialBasisFunction.h.
RadialBasisFunction::RadialBasisFunction | ( | UINT | numSteps = 100 , |
Float | positiveClassificationThreshold = 0.9 , |
||
Float | minAlphaSearchRange = 0.001 , |
||
Float | maxAlphaSearchRange = 1.0 |
||
) |
Default Constructor.
Sets the number of steps that will be used to search for the best alpha value during the training phase, in addition to other parameters used to control the RBF learning algorithm.
numSteps | sets the number of steps that will be used to search for the best alpha value during the training phase. Default value = 100 |
positiveClassificationThreshold | sets the positive classification threshold, this parameter is the threshold that defines if a value is classified as a positive sample or a negative sample. Default value = 0.9 |
minAlphaSearchRange | the minimum value used to search for the best alpha value. Default value = 0.001 |
maxAlphaSearchRange | the maximum value used to search for the best alpha value. Default value = 1.0 |
Definition at line 35 of file RadialBasisFunction.cpp.
|
virtual |
Default Destructor.
Definition at line 50 of file RadialBasisFunction.cpp.
RadialBasisFunction::RadialBasisFunction | ( | const RadialBasisFunction & | rhs | ) |
Default Copy Constructor. Defines how the data from the rhs GRT::RadialBasisFunction instance is copied to this GRT::RadialBasisFunction instance.
Definition at line 54 of file RadialBasisFunction.cpp.
|
virtual |
This function enables the data from one GRT::RadialBasisFunction instance to be copied into this GRT::RadialBasisFunction instance.
weakClassifer | a pointer to the Classifier Base Class, this should be pointing to another GRT::RadialBasisFunction instance |
Reimplemented from WeakClassifier.
Definition at line 72 of file RadialBasisFunction.cpp.
Float RadialBasisFunction::getAlpha | ( | ) | const |
Gets the current alpha value, this is used in the RBF. You can compute the RBF gamma parameter by: -1.0/(2.0*SQR(alpha)).
Definition at line 335 of file RadialBasisFunction.cpp.
Float RadialBasisFunction::getMaxAlphaSearchRange | ( | ) | const |
Gets the maxAlphaSearchRange value, this is the maximum value used to search for the best alpha value.
Definition at line 343 of file RadialBasisFunction.cpp.
Float RadialBasisFunction::getMinAlphaSearchRange | ( | ) | const |
Gets the minAlphaSearchRange value, this is the minimum value used to search for the best alpha value.
Definition at line 339 of file RadialBasisFunction.cpp.
UINT RadialBasisFunction::getNumSteps | ( | ) | const |
This function gets the number of steps parameter which sets how many steps are used to search for the best RBF alpha values.
Definition at line 327 of file RadialBasisFunction.cpp.
Float RadialBasisFunction::getPositiveClassificationThreshold | ( | ) | const |
This function gets the positiveClassificationThreshold, if the output of the RBF function is greater than or equal to the positiveClassificationThreshold then the input sample will be classified as a positive sample, otherwise it will be classified as a negative sample.
Definition at line 331 of file RadialBasisFunction.cpp.
VectorFloat RadialBasisFunction::getRBFCentre | ( | ) | const |
Gets the RBF center.
Definition at line 323 of file RadialBasisFunction.cpp.
|
virtual |
This function loads an RBF model from a file.
fstream file: a reference to the file you want to load the RBF model from
Reimplemented from WeakClassifier.
Definition at line 230 of file RadialBasisFunction.cpp.
RadialBasisFunction & RadialBasisFunction::operator= | ( | const RadialBasisFunction & | rhs | ) |
Defines how the data from the rhs GRT::RadialBasisFunction instance is copied to this GRT::RadialBasisFunction instance.
Definition at line 58 of file RadialBasisFunction.cpp.
|
virtual |
This function predicts the class label of the input vector, given the current RBF model. The class label returned will either be positive (WEAK_CLASSIFIER_POSITIVE_CLASS_LABEL) or negative (WEAK_CLASSIFIER_NEGATIVE_CLASS_LABEL).
x | the vector used for prediction |
Reimplemented from WeakClassifier.
Definition at line 184 of file RadialBasisFunction.cpp.
|
virtual |
This function prints out some basic info about the RBF to std::cout.
Reimplemented from WeakClassifier.
Definition at line 320 of file RadialBasisFunction.cpp.
|
virtual |
This function saves the current RBF model to a file.
fstream file: a reference to the file you want to save the RBF model to
Reimplemented from WeakClassifier.
Definition at line 199 of file RadialBasisFunction.cpp.
|
virtual |
This function trains the RBF, using the weighted labelled training data.
trainingData | the labelled training data |
weights | the corresponding weights for each sample in the labelled training data |
Reimplemented from WeakClassifier.
Definition at line 83 of file RadialBasisFunction.cpp.