GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <MinDist.h>
Public Member Functions | |
MinDist (bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=10.0, UINT numClusters=10) | |
MinDist (const MinDist &rhs) | |
virtual | ~MinDist (void) |
MinDist & | operator= (const MinDist &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
virtual bool | recomputeNullRejectionThresholds () |
UINT | getNumClusters () const |
Vector< MinDistModel > | getModels () const |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
bool | setNumClusters (UINT numClusters) |
Public Member Functions inherited from Classifier | |
Classifier (void) | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (bool useNullRejection) |
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
bool | getTimeseriesCompatible () const |
Classifier * | createNewInstance () const |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
UINT | numClusters |
Vector< MinDistModel > | models |
Protected Attributes inherited from Classifier | |
std::string | classifierType |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Classifier | |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Classifier | |
static Classifier * | createInstanceFromString (std::string const &classifierType) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
MinDist::MinDist | ( | bool | useScaling = false , |
bool | useNullRejection = false , |
||
Float | nullRejectionCoeff = 10.0 , |
||
UINT | numClusters = 10 |
||
) |
Default Constructor
useScaling | sets if the training and prediction data should be scaled to a specific range. Default value is useScaling = false |
useNullRejection | sets if null rejection will be used for the realtime prediction. If useNullRejection is set to true then the predictedClassLabel will be set to 0 (which is the default null label) if the distance between the inputVector and the top K datum is greater than the null rejection threshold for the top predicted class. The null rejection threshold is computed for each class during the training phase. Default value is useNullRejection = false |
nullRejectionCoeff | sets the null rejection coefficient, this is a multipler controlling the null rejection threshold for each class. This will only be used if the useNullRejection parameter is set to true. Default value is nullRejectionCoeff = 10.0 |
numClusters | sets how many clusters each model will try to find during the training phase. Default value = 10 |
Definition at line 28 of file MinDist.cpp.
MinDist::MinDist | ( | const MinDist & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 44 of file MinDist.cpp.
|
virtual |
Default Destructor
Definition at line 55 of file MinDist.cpp.
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
Definition at line 220 of file MinDist.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an MinDist instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another MinDist instance |
Reimplemented from Classifier.
Definition at line 71 of file MinDist.cpp.
Vector< MinDistModel > MinDist::getModels | ( | ) | const |
Returns the MinDist models for each of the classes.
Definition at line 257 of file MinDist.cpp.
UINT MinDist::getNumClusters | ( | ) | const |
Returns the number of clusters in the model.
Definition at line 253 of file MinDist.cpp.
|
protected |
Read the ranges if needed
Definition at line 433 of file MinDist.cpp.
|
virtual |
This loads a trained MinDist model from a file. This overrides the loadModelFromFile function in the Classifier base class.
file | a reference to the file the MinDist model will be loaded from |
Reimplemented from MLBase.
Definition at line 303 of file MinDist.cpp.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
Definition at line 162 of file MinDist.cpp.
|
virtual |
This recomputes the null rejection thresholds for each of the classes in the MinDist model. This will be called automatically if the setGamma(Float gamma) function is called. The MinDist model needs to be trained first before this function can be called.
Reimplemented from Classifier.
Definition at line 231 of file MinDist.cpp.
|
virtual |
This saves the trained MinDist model to a file. This overrides the saveModelToFile function in the Classifier base class.
file | a reference to the file the MinDist model will be saved to |
Reimplemented from MLBase.
Definition at line 261 of file MinDist.cpp.
|
virtual |
Sets the nullRejectionCoeff parameter. The nullRejectionCoeff parameter is a multipler controlling the null rejection threshold for each class. This function will also recompute the null rejection thresholds.
Reimplemented from Classifier.
Definition at line 243 of file MinDist.cpp.
bool MinDist::setNumClusters | ( | UINT | numClusters | ) |
Sets the numClusters parameter. The numClusters parameter sets how many clusters each model will try to find during the training phase. You should call this function before you train the model.
Definition at line 425 of file MinDist.cpp.
|
virtual |
This trains the MinDist model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 89 of file MinDist.cpp.