GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <LinearRegression.h>
Public Member Functions | |
LinearRegression (bool useScaling=false) | |
virtual | ~LinearRegression (void) |
LinearRegression & | operator= (const LinearRegression &rhs) |
virtual bool | deepCopyFrom (const Regressifier *regressifier) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
UINT | getMaxNumIterations () const |
bool | setMaxNumIterations (const UINT maxNumIterations) |
Public Member Functions inherited from Regressifier | |
Regressifier (void) | |
virtual | ~Regressifier (void) |
bool | copyBaseVariables (const Regressifier *regressifier) |
virtual bool | reset () |
virtual bool | clear () |
std::string | getRegressifierType () const |
VectorFloat | getRegressionData () const |
Vector< MinMax > | getInputRanges () const |
Vector< MinMax > | getOutputRanges () const |
Regressifier * | createNewInstance () const |
Regressifier * | deepCopy () const |
const Regressifier & | getBaseRegressifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Regressifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
Float | w0 |
VectorFloat | w |
Protected Attributes inherited from Regressifier | |
std::string | regressifierType |
VectorFloat | regressionData |
Vector< MinMax > | inputVectorRanges |
Vector< MinMax > | targetVectorRanges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterRegressifierModule< LinearRegression > | registerModule |
Additional Inherited Members | |
Public Types inherited from Regressifier | |
typedef std::map< std::string, Regressifier *(*)() > | StringRegressifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Regressifier | |
static Regressifier * | createInstanceFromString (const std::string ®ressifierType) |
static Vector< std::string > | getRegisteredRegressifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Regressifier | |
static StringRegressifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 40 of file LinearRegression.h.
LinearRegression::LinearRegression | ( | bool | useScaling = false | ) |
Default Constructor
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
Definition at line 28 of file LinearRegression.cpp.
|
virtual |
Default Destructor
Definition at line 42 of file LinearRegression.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setRegressifier(...) method is called. It clones the data from the Base Class Regressifier pointer (which should be pointing to an Logistic Regression instance) into this instance
regressifier | a pointer to the Regressifier Base Class, this should be pointing to another Logistic Regression instance |
Reimplemented from Regressifier.
Definition at line 57 of file LinearRegression.cpp.
UINT LinearRegression::getMaxNumIterations | ( | ) | const |
Gets the current maxNumIterations value, this is the maximum number of iterations that can be run during the training phase.
Definition at line 316 of file LinearRegression.cpp.
|
protected |
Read the ranges if needed
Definition at line 320 of file LinearRegression.cpp.
|
virtual |
This loads a trained Logistic Regression model from a file. This overrides the loadModelFromFile function in the Logistic Regression base class.
file | a reference to the file the Logistic Regression model will be loaded from |
Reimplemented from MLBase.
Definition at line 259 of file LinearRegression.cpp.
LinearRegression & LinearRegression::operator= | ( | const LinearRegression & | rhs | ) |
Defines how the data from the rhs LinearRegression should be copied to this LinearRegression
rhs | another instance of a LinearRegression |
Definition at line 46 of file LinearRegression.cpp.
|
virtual |
This performs the regression by mapping the inputVector using the current Logistic Regression model. This overrides the predict function in the Regressifier base class.
inputVector | the input vector to classify |
Reimplemented from MLBase.
Definition at line 196 of file LinearRegression.cpp.
|
virtual |
This saves the trained Logistic Regression model to a file. This overrides the saveModelToFile function in the ML base class.
file | a reference to the file the Logistic Regression model will be saved to |
Reimplemented from MLBase.
Definition at line 230 of file LinearRegression.cpp.
bool LinearRegression::setMaxNumIterations | ( | const UINT | maxNumIterations | ) |
Sets the maximum number of iterations that can be run during the training phase. The maxNumIterations value must be greater than zero.
maxNumIterations | the maximum number of iterations value, must be greater than zero |
Definition at line 312 of file LinearRegression.cpp.
|
virtual |
This trains the Logistic Regression model, using the labelled regression data. This overrides the train function in the Regression base class.
trainingData | the training data that will be used to train the regression model |
Reimplemented from MLBase.
Definition at line 74 of file LinearRegression.cpp.