|
| KNN (UINT K=10, bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=10.0, bool searchForBestKValue=false, UINT minKSearchValue=1, UINT maxKSearchValue=10) |
|
| KNN (const KNN &rhs) |
|
virtual | ~KNN (void) |
|
KNN & | operator= (const KNN &rhs) |
|
virtual bool | deepCopyFrom (const Classifier *classifier) |
|
virtual bool | train_ (ClassificationData &trainingData) |
|
virtual bool | predict_ (VectorFloat &inputVector) |
|
virtual bool | clear () |
|
virtual bool | saveModelToFile (std::fstream &file) const |
|
virtual bool | loadModelFromFile (std::fstream &file) |
|
virtual bool | recomputeNullRejectionThresholds () |
|
UINT | getK () |
|
UINT | getDistanceMethod () |
|
bool | setK (UINT K) |
|
bool | setMinKSearchValue (UINT minKSearchValue) |
|
bool | setMaxKSearchValue (UINT maxKSearchValue) |
|
bool | enableBestKValueSearch (bool searchForBestKValue) |
|
bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
|
bool | setDistanceMethod (UINT distanceMethod) |
|
| Classifier (void) |
|
virtual | ~Classifier (void) |
|
bool | copyBaseVariables (const Classifier *classifier) |
|
virtual bool | reset () |
|
std::string | getClassifierType () const |
|
bool | getSupportsNullRejection () const |
|
bool | getNullRejectionEnabled () const |
|
Float | getNullRejectionCoeff () const |
|
Float | getMaximumLikelihood () const |
|
Float | getBestDistance () const |
|
Float | getPhase () const |
|
virtual UINT | getNumClasses () const |
|
UINT | getClassLabelIndexValue (UINT classLabel) const |
|
UINT | getPredictedClassLabel () const |
|
VectorFloat | getClassLikelihoods () const |
|
VectorFloat | getClassDistances () const |
|
VectorFloat | getNullRejectionThresholds () const |
|
Vector< UINT > | getClassLabels () const |
|
Vector< MinMax > | getRanges () const |
|
bool | enableNullRejection (bool useNullRejection) |
|
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
|
bool | getTimeseriesCompatible () const |
|
Classifier * | createNewInstance () const |
|
Classifier * | deepCopy () const |
|
const Classifier * | getClassifierPointer () const |
|
const Classifier & | getBaseClassifier () const |
|
| MLBase (void) |
|
virtual | ~MLBase (void) |
|
bool | copyMLBaseVariables (const MLBase *mlBase) |
|
virtual bool | train (ClassificationData trainingData) |
|
virtual bool | train (RegressionData trainingData) |
|
virtual bool | train_ (RegressionData &trainingData) |
|
virtual bool | train (TimeSeriesClassificationData trainingData) |
|
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
|
virtual bool | train (ClassificationDataStream trainingData) |
|
virtual bool | train_ (ClassificationDataStream &trainingData) |
|
virtual bool | train (UnlabelledData trainingData) |
|
virtual bool | train_ (UnlabelledData &trainingData) |
|
virtual bool | train (MatrixFloat data) |
|
virtual bool | train_ (MatrixFloat &data) |
|
virtual bool | predict (VectorFloat inputVector) |
|
virtual bool | predict (MatrixFloat inputMatrix) |
|
virtual bool | predict_ (MatrixFloat &inputMatrix) |
|
virtual bool | map (VectorFloat inputVector) |
|
virtual bool | map_ (VectorFloat &inputVector) |
|
virtual bool | print () const |
|
virtual bool | save (const std::string filename) const |
|
virtual bool | load (const std::string filename) |
|
virtual bool | saveModelToFile (std::string filename) const |
|
virtual bool | loadModelFromFile (std::string filename) |
|
virtual bool | getModel (std::ostream &stream) const |
|
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
|
virtual std::string | getModelAsString () const |
|
DataType | getInputType () const |
|
DataType | getOutputType () const |
|
UINT | getBaseType () const |
|
UINT | getNumInputFeatures () const |
|
UINT | getNumInputDimensions () const |
|
UINT | getNumOutputDimensions () const |
|
UINT | getMinNumEpochs () const |
|
UINT | getMaxNumEpochs () const |
|
UINT | getValidationSetSize () const |
|
UINT | getNumTrainingIterationsToConverge () const |
|
Float | getMinChange () const |
|
Float | getLearningRate () const |
|
Float | getRootMeanSquaredTrainingError () const |
|
Float | getTotalSquaredTrainingError () const |
|
Float | getValidationSetAccuracy () const |
|
VectorFloat | getValidationSetPrecision () const |
|
VectorFloat | getValidationSetRecall () const |
|
bool | getUseValidationSet () const |
|
bool | getRandomiseTrainingOrder () const |
|
bool | getTrained () const |
|
bool | getModelTrained () const |
|
bool | getScalingEnabled () const |
|
bool | getIsBaseTypeClassifier () const |
|
bool | getIsBaseTypeRegressifier () const |
|
bool | getIsBaseTypeClusterer () const |
|
bool | enableScaling (const bool useScaling) |
|
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
|
bool | setMinNumEpochs (const UINT minNumEpochs) |
|
bool | setMinChange (const Float minChange) |
|
bool | setLearningRate (const Float learningRate) |
|
bool | setUseValidationSet (const bool useValidationSet) |
|
bool | setValidationSetSize (const UINT validationSetSize) |
|
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
|
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
|
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
|
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
|
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
|
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
|
bool | removeAllTrainingObservers () |
|
bool | removeAllTestObservers () |
|
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
|
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
|
MLBase * | getMLBasePointer () |
|
const MLBase * | getMLBasePointer () const |
|
Vector< TrainingResult > | getTrainingResults () const |
|
| GRTBase (void) |
|
virtual | ~GRTBase (void) |
|
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
|
std::string | getClassType () const |
|
std::string | getLastWarningMessage () const |
|
std::string | getLastErrorMessage () const |
|
std::string | getLastInfoMessage () const |
|
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
|
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
|
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
|
GRTBase * | getGRTBasePointer () |
|
const GRTBase * | getGRTBasePointer () const |
|
virtual void | notify (const TrainingResult &data) |
|
virtual void | notify (const TestInstanceResult &data) |
|
|
UINT | K |
|
UINT | distanceMethod |
|
The number of neighbours to search for
|
|
bool | searchForBestKValue |
|
The distance method used to compute the distance between each data point
|
|
UINT | minKSearchValue |
|
Sets if the best K value should be searched for or if the model should be trained with K
|
|
UINT | maxKSearchValue |
|
The minimum K value to start the search from
|
|
ClassificationData | trainingData |
|
The maximum K value to end the search at
|
|
VectorFloat | trainingMu |
|
Holds the trainingData to perform the predictions
|
|
VectorFloat | trainingSigma |
|
Holds the average max-class distance of the training data for each of classes
|
|
std::string | classifierType |
|
bool | supportsNullRejection |
|
bool | useNullRejection |
|
UINT | numClasses |
|
UINT | predictedClassLabel |
|
UINT | classifierMode |
|
Float | nullRejectionCoeff |
|
Float | maxLikelihood |
|
Float | bestDistance |
|
Float | phase |
|
VectorFloat | classLikelihoods |
|
VectorFloat | classDistances |
|
VectorFloat | nullRejectionThresholds |
|
Vector< UINT > | classLabels |
|
Vector< MinMax > | ranges |
|
bool | trained |
|
bool | useScaling |
|
DataType | inputType |
|
DataType | outputType |
|
UINT | baseType |
|
UINT | numInputDimensions |
|
UINT | numOutputDimensions |
|
UINT | numTrainingIterationsToConverge |
|
UINT | minNumEpochs |
|
UINT | maxNumEpochs |
|
UINT | validationSetSize |
|
Float | learningRate |
|
Float | minChange |
|
Float | rootMeanSquaredTrainingError |
|
Float | totalSquaredTrainingError |
|
Float | validationSetAccuracy |
|
bool | useValidationSet |
|
bool | randomiseTrainingOrder |
|
VectorFloat | validationSetPrecision |
|
VectorFloat | validationSetRecall |
|
Random | random |
|
std::vector< TrainingResult > | trainingResults |
|
TrainingResultsObserverManager | trainingResultsObserverManager |
|
TestResultsObserverManager | testResultsObserverManager |
|
std::string | classType |
|
DebugLog | debugLog |
|
ErrorLog | errorLog |
|
InfoLog | infoLog |
|
TrainingLog | trainingLog |
|
TestingLog | testingLog |
|
WarningLog | warningLog |
|
Definition at line 51 of file KNN.h.