GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This is the complete list of members for KMeansFeatures, including all inherited members.
alpha (defined in KMeansFeatures) | KMeansFeatures | protected |
BASE_TYPE_NOT_SET enum value (defined in MLBase) | MLBase | |
baseType (defined in MLBase) | MLBase | protected |
BaseTypes enum name (defined in MLBase) | MLBase | |
CLASSIFIER enum value (defined in MLBase) | MLBase | |
classType (defined in GRTBase) | GRTBase | protected |
clear() | FeatureExtraction | virtual |
CLUSTERER enum value (defined in MLBase) | MLBase | |
clusters (defined in KMeansFeatures) | KMeansFeatures | protected |
computeFeatures(const VectorFloat &inputVector) | KMeansFeatures | virtual |
computeFeatures(VectorFloat &inputVector, VectorFloat &outputVector) (defined in KMeansFeatures) | KMeansFeatures | |
FeatureExtraction::computeFeatures(const MatrixFloat &inputMatrix) | FeatureExtraction | inlinevirtual |
copyBaseVariables(const FeatureExtraction *featureExtractionModule) | FeatureExtraction | |
copyGRTBaseVariables(const GRTBase *GRTBase) | GRTBase | |
copyMLBaseVariables(const MLBase *mlBase) | MLBase | |
createInstanceFromString(const std::string &featureExtractionType) (defined in FeatureExtraction) | FeatureExtraction | static |
createNewInstance() const | FeatureExtraction | |
debugLog (defined in GRTBase) | GRTBase | protected |
deepCopyFrom(const FeatureExtraction *featureExtraction) | KMeansFeatures | virtual |
enableScaling(const bool useScaling) | MLBase | |
errorLog (defined in GRTBase) | GRTBase | protected |
featureDataReady (defined in FeatureExtraction) | FeatureExtraction | protected |
FeatureExtraction() | FeatureExtraction | |
featureExtractionType (defined in FeatureExtraction) | FeatureExtraction | protected |
featureMatrix (defined in FeatureExtraction) | FeatureExtraction | protected |
featureVector (defined in FeatureExtraction) | FeatureExtraction | protected |
getBaseType() const | MLBase | |
getClassType() const | GRTBase | |
getClusters() const (defined in KMeansFeatures) | KMeansFeatures | |
getFeatureDataReady() const | FeatureExtraction | |
getFeatureExtractionType() const | FeatureExtraction | |
getFeatureMatrix() const | FeatureExtraction | |
getFeatureVector() const | FeatureExtraction | |
getGRTBasePointer() | GRTBase | |
getGRTBasePointer() const | GRTBase | |
getGRTRevison() | GRTBase | static |
getGRTVersion(bool returnRevision=true) | GRTBase | static |
getInitialized() const | FeatureExtraction | |
getInputType() const | MLBase | |
getIsBaseTypeClassifier() const | MLBase | |
getIsBaseTypeClusterer() const | MLBase | |
getIsBaseTypeRegressifier() const | MLBase | |
getLastErrorMessage() const | GRTBase | |
getLastInfoMessage() const | GRTBase | |
getLastWarningMessage() const | GRTBase | |
getLayerSize(const UINT layerIndex) const (defined in KMeansFeatures) | KMeansFeatures | |
getLearningRate() const | MLBase | |
getMap() (defined in FeatureExtraction) | FeatureExtraction | inlineprotectedstatic |
getMaxNumEpochs() const | MLBase | |
getMinChange() const | MLBase | |
getMinNumEpochs() const | MLBase | |
getMLBasePointer() | MLBase | |
getMLBasePointer() const | MLBase | |
getModel(std::ostream &stream) const | MLBase | virtual |
getModelAsString() const | MLBase | virtual |
getModelTrained() const | MLBase | |
getNumInputDimensions() const | FeatureExtraction | |
getNumInputFeatures() const | MLBase | |
getNumLayers() const (defined in KMeansFeatures) | KMeansFeatures | |
getNumOutputDimensions() const | FeatureExtraction | |
getNumTrainingIterationsToConverge() const | MLBase | |
getOutputType() const | MLBase | |
getRandomiseTrainingOrder() const | MLBase | |
getRootMeanSquaredTrainingError() const | MLBase | |
getScalingEnabled() const | MLBase | |
getTotalSquaredTrainingError() const | MLBase | |
getTrained() const | MLBase | |
getTrainingResults() const | MLBase | |
getUseValidationSet() const | MLBase | |
getValidationSetAccuracy() const | MLBase | |
getValidationSetPrecision() const | MLBase | |
getValidationSetRecall() const | MLBase | |
getValidationSetSize() const | MLBase | |
GRTBase(void) | GRTBase | |
infoLog (defined in GRTBase) | GRTBase | protected |
init(const Vector< UINT > numClustersPerLayer) (defined in KMeansFeatures) | KMeansFeatures | |
FeatureExtraction::init() | FeatureExtraction | protected |
initialized (defined in FeatureExtraction) | FeatureExtraction | protected |
inputType (defined in MLBase) | MLBase | protected |
KMeansFeatures(const Vector< UINT > numClustersPerLayer=Vector< UINT >(1, 100), const Float alpha=0.2, const bool useScaling=true) | KMeansFeatures | |
KMeansFeatures(const KMeansFeatures &rhs) | KMeansFeatures | |
learningRate (defined in MLBase) | MLBase | protected |
load(const std::string filename) | MLBase | virtual |
loadBaseSettingsFromFile(std::fstream &file) | MLBase | protected |
loadFeatureExtractionSettingsFromFile(std::fstream &file) | FeatureExtraction | protected |
loadModelFromFile(std::string filename) | KMeansFeatures | virtual |
loadModelFromFile(std::fstream &file) | KMeansFeatures | virtual |
map(VectorFloat inputVector) | MLBase | virtual |
map_(VectorFloat &inputVector) | MLBase | virtual |
maxNumEpochs (defined in MLBase) | MLBase | protected |
minChange (defined in MLBase) | MLBase | protected |
minNumEpochs (defined in MLBase) | MLBase | protected |
MLBase(void) | MLBase | |
notify(const TrainingResult &data) (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |
notifyTestResultsObservers(const TestInstanceResult &data) | MLBase | |
notifyTrainingResultsObservers(const TrainingResult &data) | MLBase | |
numClustersPerLayer (defined in KMeansFeatures) | KMeansFeatures | protected |
numInputDimensions (defined in MLBase) | MLBase | protected |
numOutputDimensions (defined in MLBase) | MLBase | protected |
numTrainingIterationsToConverge (defined in MLBase) | MLBase | protected |
Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inline |
Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inline |
operator=(const KMeansFeatures &rhs) | KMeansFeatures | |
outputType (defined in MLBase) | MLBase | protected |
predict(VectorFloat inputVector) | MLBase | virtual |
predict(MatrixFloat inputMatrix) | MLBase | virtual |
predict_(VectorFloat &inputVector) | MLBase | virtual |
predict_(MatrixFloat &inputMatrix) | MLBase | virtual |
print() const | MLBase | virtual |
projectDataThroughLayer(const VectorFloat &input, VectorFloat &output, const UINT layer) (defined in KMeansFeatures) | KMeansFeatures | |
random (defined in MLBase) | MLBase | protected |
randomiseTrainingOrder (defined in MLBase) | MLBase | protected |
ranges (defined in KMeansFeatures) | KMeansFeatures | protected |
registerModule (defined in KMeansFeatures) | KMeansFeatures | protectedstatic |
registerTestResultsObserver(Observer< TestInstanceResult > &observer) | MLBase | |
registerTrainingResultsObserver(Observer< TrainingResult > &observer) | MLBase | |
REGRESSIFIER enum value (defined in MLBase) | MLBase | |
removeAllTestObservers() | MLBase | |
removeAllTrainingObservers() | MLBase | |
removeTestResultsObserver(const Observer< TestInstanceResult > &observer) | MLBase | |
removeTrainingResultsObserver(const Observer< TrainingResult > &observer) | MLBase | |
reset() | KMeansFeatures | virtual |
rootMeanSquaredTrainingError (defined in MLBase) | MLBase | protected |
save(const std::string filename) const | MLBase | virtual |
saveBaseSettingsToFile(std::fstream &file) const | MLBase | protected |
saveFeatureExtractionSettingsToFile(std::fstream &file) const | FeatureExtraction | protected |
saveModelToFile(std::string filename) const | KMeansFeatures | virtual |
saveModelToFile(std::fstream &file) const | KMeansFeatures | virtual |
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) | MLBase | inline |
setErrorLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setInfoLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setLearningRate(const Float learningRate) | MLBase | |
setMaxNumEpochs(const UINT maxNumEpochs) | MLBase | |
setMinChange(const Float minChange) | MLBase | |
setMinNumEpochs(const UINT minNumEpochs) | MLBase | |
setRandomiseTrainingOrder(const bool randomiseTrainingOrder) | MLBase | |
setTrainingLoggingEnabled(const bool loggingEnabled) | MLBase | |
setUseValidationSet(const bool useValidationSet) | MLBase | |
setValidationSetSize(const UINT validationSetSize) | MLBase | |
setWarningLoggingEnabled(const bool loggingEnabled) | GRTBase | |
SQR(const Float &x) const (defined in GRTBase) | GRTBase | inlineprotected |
StringFeatureExtractionMap typedef | FeatureExtraction | |
testingLog (defined in GRTBase) | GRTBase | protected |
testResultsObserverManager (defined in MLBase) | MLBase | protected |
totalSquaredTrainingError (defined in MLBase) | MLBase | protected |
train(ClassificationData trainingData) | MLBase | virtual |
train(RegressionData trainingData) | MLBase | virtual |
train(TimeSeriesClassificationData trainingData) | MLBase | virtual |
train(ClassificationDataStream trainingData) | MLBase | virtual |
train(UnlabelledData trainingData) | MLBase | virtual |
train(MatrixFloat data) | MLBase | virtual |
train_(ClassificationData &trainingData) | KMeansFeatures | virtual |
train_(TimeSeriesClassificationData &trainingData) | KMeansFeatures | virtual |
train_(ClassificationDataStream &trainingData) | KMeansFeatures | virtual |
train_(UnlabelledData &trainingData) | KMeansFeatures | virtual |
train_(MatrixFloat &trainingData) | KMeansFeatures | virtual |
FeatureExtraction::train_(RegressionData &trainingData) | MLBase | virtual |
trained (defined in MLBase) | MLBase | protected |
trainingLog (defined in GRTBase) | GRTBase | protected |
trainingResults (defined in MLBase) | MLBase | protected |
trainingResultsObserverManager (defined in MLBase) | MLBase | protected |
useScaling (defined in MLBase) | MLBase | protected |
useValidationSet (defined in MLBase) | MLBase | protected |
validationSetAccuracy (defined in MLBase) | MLBase | protected |
validationSetPrecision (defined in MLBase) | MLBase | protected |
validationSetRecall (defined in MLBase) | MLBase | protected |
validationSetSize (defined in MLBase) | MLBase | protected |
warningLog (defined in GRTBase) | GRTBase | protected |
~FeatureExtraction() | FeatureExtraction | virtual |
~GRTBase(void) | GRTBase | virtual |
~KMeansFeatures() | KMeansFeatures | virtual |
~MLBase(void) | MLBase | virtual |
~Observer() (defined in Observer< TrainingResult >) | Observer< TrainingResult > | inlinevirtual |
~Observer() (defined in Observer< TestInstanceResult >) | Observer< TestInstanceResult > | inlinevirtual |