GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <KMeans.h>
Public Member Functions | |
KMeans (const UINT numClusters=10, const UINT minNumEpochs=5, const UINT maxNumEpochs=1000, const Float minChange=1.0e-5, const bool computeTheta=true) | |
KMeans (const KMeans &rhs) | |
virtual | ~KMeans () |
KMeans & | operator= (const KMeans &rhs) |
virtual bool | deepCopyFrom (const Clusterer *clusterer) |
virtual bool | reset () |
virtual bool | clear () |
bool | trainModel (MatrixFloat &data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
Float | getTheta () |
bool | getModelTrained () |
const VectorFloat & | getTrainingThetaLog () const |
const MatrixFloat & | getClusters () const |
const Vector< UINT > & | getClassLabelsVector () const |
const Vector< UINT > & | getClassCountVector () const |
bool | setComputeTheta (const bool computeTheta) |
bool | setClusters (const MatrixFloat &clusters) |
Public Member Functions inherited from Clusterer | |
Clusterer (void) | |
virtual | ~Clusterer (void) |
bool | copyBaseVariables (const Clusterer *clusterer) |
bool | getConverged () const |
UINT | getNumClusters () const |
UINT | getPredictedClusterLabel () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
VectorFloat | getClusterLikelihoods () const |
VectorFloat | getClusterDistances () const |
Vector< UINT > | getClusterLabels () const |
std::string | getClustererType () const |
bool | setNumClusters (const UINT numClusters) |
Clusterer * | createNewInstance () const |
Clusterer * | deepCopy () const |
const Clusterer & | getBaseClusterer () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
UINT | estep (const MatrixFloat &data) |
void | mstep (const MatrixFloat &data) |
Float | calculateTheta (const MatrixFloat &data) |
Float | SQR (const Float a) |
Protected Member Functions inherited from Clusterer | |
bool | saveClustererSettingsToFile (std::fstream &file) const |
bool | loadClustererSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
bool | computeTheta |
UINT | numTrainingSamples |
Number of training examples. | |
UINT | nchg |
Number of values changes. | |
Float | finalTheta |
MatrixFloat | clusters |
Vector< UINT > | assign |
Vector< UINT > | count |
VectorFloat | thetaTracker |
Protected Attributes inherited from Clusterer | |
std::string | clustererType |
UINT | numClusters |
Number of clusters in the model. | |
UINT | predictedClusterLabel |
Stores the predicted cluster label from the most recent predict( ) | |
Float | maxLikelihood |
Float | bestDistance |
VectorFloat | clusterLikelihoods |
VectorFloat | clusterDistances |
Vector< UINT > | clusterLabels |
bool | converged |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Clusterer | |
typedef std::map< std::string, Clusterer *(*)() > | StringClustererMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Clusterer | |
static Clusterer * | createInstanceFromString (std::string const &ClustererType) |
static Vector< std::string > | getRegisteredClusterers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Clusterer | |
static StringClustererMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
KMeans::KMeans | ( | const UINT | numClusters = 10 , |
const UINT | minNumEpochs = 5 , |
||
const UINT | maxNumEpochs = 1000 , |
||
const Float | minChange = 1.0e-5 , |
||
const bool | computeTheta = true |
||
) |
Default Constructor.
Definition at line 29 of file KMeans.cpp.
KMeans::KMeans | ( | const KMeans & | rhs | ) |
Defines how the data from the rhs KMeans should be copied to this KMeans
rhs | another instance of a KMeans |
Definition at line 51 of file KMeans.cpp.
|
virtual |
Default Destructor
Definition at line 77 of file KMeans.cpp.
|
virtual |
This function clears the Clusterer module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Clusterer.
Definition at line 499 of file KMeans.cpp.
|
virtual |
This deep copies the variables and models from the Clusterer pointer to this KMeans instance. This overrides the base deep copy function for the Clusterer modules.
clusterer | a pointer to the Clusterer base class, this should be pointing to another KMeans instance |
Reimplemented from Clusterer.
Definition at line 100 of file KMeans.cpp.
|
virtual |
This loads a trained KMeans model from a file. This overrides the loadModelFromFile function in the base class.
file | a reference to the file the KMeans model will be loaded from |
Reimplemented from MLBase.
Definition at line 445 of file KMeans.cpp.
|
virtual |
This is the main prediction interface for all reference VectorFloat data. It overrides the predict_ function in the ML base class.
inputVector | a reference to the input Vector for prediction |
Reimplemented from MLBase.
Definition at line 199 of file KMeans.cpp.
|
virtual |
|
virtual |
This saves the trained KMeans model to a file. This overrides the saveModelToFile function in the base class.
file | a reference to the file the KMeans model will be saved to |
Reimplemented from MLBase.
Definition at line 417 of file KMeans.cpp.
bool KMeans::setClusters | ( | const MatrixFloat & | clusters | ) |
This function lets you set the models clusters. You can use this to initalize the cluster values for the training algorithm. If you do that, then you should call the trainModel to run the training algorithm so the cluster values do not get reset.
const | MatrixFloat &clusters: the initial cluster values that will be used to train the KMeans model |
Definition at line 518 of file KMeans.cpp.
|
virtual |
This is the main training interface for referenced MatrixFloat data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 162 of file KMeans.cpp.
|
virtual |
This is the main training interface for reference ClassificationData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 123 of file KMeans.cpp.
|
virtual |
This is the main training interface for reference UnlabelledData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 147 of file KMeans.cpp.
bool KMeans::trainModel | ( | MatrixFloat & | data | ) |
This is the main training algorithm for training a KMeans model. You should only call this function if you have manually set the clusters, otherwise you should use any of the train or train_ in functions.
trainingData | the training data that will be used to train the ML model |
Definition at line 258 of file KMeans.cpp.