GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
HierarchicalClustering () | |
HierarchicalClustering (const HierarchicalClustering &rhs) | |
virtual | ~HierarchicalClustering () |
HierarchicalClustering & | operator= (const HierarchicalClustering &rhs) |
virtual bool | deepCopyFrom (const Clusterer *clusterer) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | train_ (MatrixFloat &trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
bool | printModel () |
Vector< ClusterLevel > | getClusters () |
Public Member Functions inherited from Clusterer | |
Clusterer (void) | |
virtual | ~Clusterer (void) |
bool | copyBaseVariables (const Clusterer *clusterer) |
bool | getConverged () const |
UINT | getNumClusters () const |
UINT | getPredictedClusterLabel () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
VectorFloat | getClusterLikelihoods () const |
VectorFloat | getClusterDistances () const |
Vector< UINT > | getClusterLabels () const |
std::string | getClustererType () const |
bool | setNumClusters (const UINT numClusters) |
Clusterer * | createNewInstance () const |
Clusterer * | deepCopy () const |
const Clusterer & | getBaseClusterer () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
Float | SQR (const Float &a) |
Float | squaredEuclideanDistance (const Float *a, const Float *b) |
Float | computeClusterDistance (const ClusterInfo &clusterA, const ClusterInfo &clusterB) |
Float | computeClusterVariance (const ClusterInfo &cluster, const MatrixFloat &data) |
Protected Member Functions inherited from Clusterer | |
bool | saveClustererSettingsToFile (std::fstream &file) const |
bool | loadClustererSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
UINT | M |
UINT | N |
Vector< ClusterLevel > | clusters |
MatrixFloat | distanceMatrix |
Protected Attributes inherited from Clusterer | |
std::string | clustererType |
UINT | numClusters |
Number of clusters in the model. | |
UINT | predictedClusterLabel |
Stores the predicted cluster label from the most recent predict( ) | |
Float | maxLikelihood |
Float | bestDistance |
VectorFloat | clusterLikelihoods |
VectorFloat | clusterDistances |
Vector< UINT > | clusterLabels |
bool | converged |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Clusterer | |
typedef std::map< std::string, Clusterer *(*)() > | StringClustererMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Clusterer | |
static Clusterer * | createInstanceFromString (std::string const &ClustererType) |
static Vector< std::string > | getRegisteredClusterers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Clusterer | |
static StringClustererMap * | getMap () |
Definition at line 134 of file HierarchicalClustering.h.
HierarchicalClustering::HierarchicalClustering | ( | ) |
Default Constructor.
Definition at line 28 of file HierarchicalClustering.cpp.
HierarchicalClustering::HierarchicalClustering | ( | const HierarchicalClustering & | rhs | ) |
Defines how the data from the rhs instance should be copied to this instance
rhs | another instance of a HierarchicalClustering |
Definition at line 38 of file HierarchicalClustering.cpp.
|
virtual |
Default Destructor
Definition at line 48 of file HierarchicalClustering.cpp.
|
virtual |
This function clears the Clusterer module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Clusterer.
Definition at line 94 of file HierarchicalClustering.cpp.
|
virtual |
This deep copies the variables and models from the Clusterer pointer to this HierarchicalClustering instance. This overrides the base deep copy function for the Clusterer modules.
clusterer | a pointer to the Clusterer base class, this should be pointing to another HierarchicalClustering instance |
Reimplemented from Clusterer.
Definition at line 68 of file HierarchicalClustering.cpp.
|
virtual |
This loads a trained HierarchicalClustering model from a file. This overrides the loadModelFromFile function in the base class.
file | a reference to the file the HierarchicalClustering model will be loaded from |
Reimplemented from MLBase.
Definition at line 417 of file HierarchicalClustering.cpp.
HierarchicalClustering & HierarchicalClustering::operator= | ( | const HierarchicalClustering & | rhs | ) |
Defines how the data from the rhs instance should be copied to this instance
rhs | another instance of a HierarchicalClustering |
Definition at line 52 of file HierarchicalClustering.cpp.
|
virtual |
|
virtual |
This saves the trained HierarchicalClustering model to a file. This overrides the saveModelToFile function in the base class.
file | a reference to the file the HierarchicalClustering model will be saved to |
Reimplemented from MLBase.
Definition at line 388 of file HierarchicalClustering.cpp.
|
virtual |
This is the main training interface for referenced MatrixFloat data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 146 of file HierarchicalClustering.cpp.
|
virtual |
This is the main training interface for reference ClassificationData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 106 of file HierarchicalClustering.cpp.
|
virtual |
This is the main training interface for reference UnlabelledData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 126 of file HierarchicalClustering.cpp.