GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <GaussianMixtureModels.h>
Public Member Functions | |
GaussianMixtureModels (const UINT numClusters=10, const UINT minNumEpochs=5, const UINT maxNumEpochs=1000, const Float minChange=1.0e-5) | |
GaussianMixtureModels (const GaussianMixtureModels &rhs) | |
virtual | ~GaussianMixtureModels () |
GaussianMixtureModels & | operator= (const GaussianMixtureModels &rhs) |
virtual bool | deepCopyFrom (const Clusterer *clusterer) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | train_ (MatrixFloat &trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | predict_ (VectorDouble &inputVector) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
MatrixFloat | getMu () const |
Vector< MatrixFloat > | getSigma () const |
MatrixFloat | getSigma (const UINT k) const |
Public Member Functions inherited from Clusterer | |
Clusterer (void) | |
virtual | ~Clusterer (void) |
bool | copyBaseVariables (const Clusterer *clusterer) |
bool | getConverged () const |
UINT | getNumClusters () const |
UINT | getPredictedClusterLabel () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
VectorFloat | getClusterLikelihoods () const |
VectorFloat | getClusterDistances () const |
Vector< UINT > | getClusterLabels () const |
std::string | getClustererType () const |
bool | setNumClusters (const UINT numClusters) |
Clusterer * | createNewInstance () const |
Clusterer * | deepCopy () const |
const Clusterer & | getBaseClusterer () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | estep (const MatrixFloat &data, VectorDouble &u, VectorDouble &v, Float &change) |
bool | mstep (const MatrixFloat &data) |
bool | computeInvAndDet () |
void | SWAP (UINT &a, UINT &b) |
Float | SQR (const Float v) |
Float | gauss (const VectorDouble &x, const UINT clusterIndex, const VectorDouble &det, const MatrixFloat &mu, const Vector< MatrixFloat > &invSigma) |
Protected Member Functions inherited from Clusterer | |
bool | saveClustererSettingsToFile (std::fstream &file) const |
bool | loadClustererSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
UINT | numTrainingSamples |
The number of samples in the training data. | |
Float | loglike |
The current loglikelihood value of the models given the data. | |
MatrixFloat | mu |
A matrix holding the estimated mean values of each Gaussian. | |
MatrixFloat | resp |
The responsibility matrix. | |
VectorDouble | frac |
A vector holding the P(k)'s. | |
VectorDouble | lndets |
A vector holding the log detminants of SIGMA'k. | |
VectorDouble | det |
Vector< MatrixFloat > | sigma |
Vector< MatrixFloat > | invSigma |
Protected Attributes inherited from Clusterer | |
std::string | clustererType |
UINT | numClusters |
Number of clusters in the model. | |
UINT | predictedClusterLabel |
Stores the predicted cluster label from the most recent predict( ) | |
Float | maxLikelihood |
Float | bestDistance |
VectorFloat | clusterLikelihoods |
VectorFloat | clusterDistances |
Vector< UINT > | clusterLabels |
bool | converged |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Additional Inherited Members | |
Public Types inherited from Clusterer | |
typedef std::map< std::string, Clusterer *(*)() > | StringClustererMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Clusterer | |
static Clusterer * | createInstanceFromString (std::string const &ClustererType) |
static Vector< std::string > | getRegisteredClusterers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Protected Member Functions inherited from Clusterer | |
static StringClustererMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 37 of file GaussianMixtureModels.h.
GaussianMixtureModels::GaussianMixtureModels | ( | const UINT | numClusters = 10 , |
const UINT | minNumEpochs = 5 , |
||
const UINT | maxNumEpochs = 1000 , |
||
const Float | minChange = 1.0e-5 |
||
) |
Default Constructor.
Definition at line 10 of file GaussianMixtureModels.cpp.
GaussianMixtureModels::GaussianMixtureModels | ( | const GaussianMixtureModels & | rhs | ) |
Defines how the data from the rhs instance should be copied to this instance
rhs | another instance of a GaussianMixtureModels |
Definition at line 29 of file GaussianMixtureModels.cpp.
|
virtual |
Default Destructor
Definition at line 56 of file GaussianMixtureModels.cpp.
|
virtual |
This function clears the Clusterer module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Clusterer.
Definition at line 114 of file GaussianMixtureModels.cpp.
|
virtual |
This deep copies the variables and models from the Clusterer pointer to this GaussianMixtureModels instance. This overrides the base deep copy function for the Clusterer modules.
clusterer | a pointer to the Clusterer base class, this should be pointing to another GaussianMixtureModels instance |
Reimplemented from Clusterer.
Definition at line 80 of file GaussianMixtureModels.cpp.
|
inline |
This function returns the mu matrix which is built during the training phase. If the GMM model has not been trained, then this function will return an empty MatrixFloat. If the GMM model has been trained, then each row in the mu matrix represents a cluster and each column represents an input dimension.
Definition at line 141 of file GaussianMixtureModels.h.
|
inline |
This function returns the sigma matrix which is built during the training phase. If the GMM model has not been trained, then this function will return an empty vector< MatrixFloat >. If the GMM model has been trained, then each element in the returned vector represents a cluster. Each element is a MatrixFloat, which will have N rows and N columns, where N is the number of input dimensions to the model.
Definition at line 151 of file GaussianMixtureModels.h.
|
inline |
This function returns the sigma matrix for a specific cluster. If the GMM model has not been trained, then this function will return an empty MatrixFloat. If the GMM model has been trained, then the returned MatrixFloat will have N rows and N columns, where N is the number of input dimensions to the model.
Definition at line 160 of file GaussianMixtureModels.h.
|
virtual |
This loads a trained GaussianMixtureModels model from a file. This overrides the loadModelFromFile function in the base class.
fstream | &file: a reference to the file the GaussianMixtureModels model will be loaded from |
Reimplemented from MLBase.
Definition at line 362 of file GaussianMixtureModels.cpp.
GaussianMixtureModels & GaussianMixtureModels::operator= | ( | const GaussianMixtureModels & | rhs | ) |
Defines how the data from the rhs instance should be copied to this instance
rhs | another instance of a GaussianMixtureModels |
Definition at line 59 of file GaussianMixtureModels.cpp.
|
virtual |
This is the main prediction interface for all the GRT machine learning algorithms. This should be overwritten by the derived class.
inputVector | a reference to the input vector for prediction |
Reimplemented from MLBase.
Definition at line 256 of file GaussianMixtureModels.cpp.
|
virtual |
|
virtual |
This saves the trained GaussianMixtureModels model to a file. This overrides the saveModelToFile function in the base class.
fstream | &file: a reference to the file the GaussianMixtureModels model will be saved to |
Reimplemented from MLBase.
Definition at line 309 of file GaussianMixtureModels.cpp.
|
virtual |
This is the main training interface for referenced MatrixFloat data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 131 of file GaussianMixtureModels.cpp.
|
virtual |
This is the main training interface for reference ClassificationData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 246 of file GaussianMixtureModels.cpp.
|
virtual |
This is the main training interface for reference UnlabelledData data. It overrides the train_ function in the ML base class.
trainingData | a reference to the training data that will be used to train the ML model |
Reimplemented from Clusterer.
Definition at line 251 of file GaussianMixtureModels.cpp.