GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <DecisionTree.h>
Public Member Functions | |
DecisionTree (const DecisionTreeNode &decisionTreeNode=DecisionTreeClusterNode(), const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const UINT trainingMode=BEST_ITERATIVE_SPILT, const UINT numSplittingSteps=100, const bool useScaling=false) | |
DecisionTree (const DecisionTree &rhs) | |
virtual | ~DecisionTree (void) |
DecisionTree & | operator= (const DecisionTree &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | clear () |
virtual bool | recomputeNullRejectionThresholds () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
virtual bool | getModel (std::ostream &stream) const |
DecisionTreeNode * | deepCopyTree () const |
const DecisionTreeNode * | getTree () const |
DecisionTreeNode * | deepCopyDecisionTreeNode () const |
bool | setDecisionTreeNode (const DecisionTreeNode &node) |
Public Member Functions inherited from Tree | |
Tree (const UINT numSplittingSteps=100, const UINT minNumSamplesPerNode=5, const UINT maxDepth=10, const bool removeFeaturesAtEachSpilt=false, const UINT trainingMode=BEST_ITERATIVE_SPILT) | |
virtual | ~Tree (void) |
virtual bool | print () const |
const Node * | getTree () const |
UINT | getTrainingMode () const |
UINT | getNumSplittingSteps () const |
UINT | getMinNumSamplesPerNode () const |
UINT | getMaxDepth () const |
UINT | getPredictedNodeID () const |
bool | getRemoveFeaturesAtEachSpilt () const |
bool | setTrainingMode (const UINT trainingMode) |
bool | setNumSplittingSteps (const UINT numSplittingSteps) |
bool | setMinNumSamplesPerNode (const UINT minNumSamplesPerNode) |
bool | setMaxDepth (const UINT maxDepth) |
bool | setRemoveFeaturesAtEachSpilt (const bool removeFeaturesAtEachSpilt) |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Classifier | |
Classifier (void) | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
virtual bool | reset () |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (bool useNullRejection) |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
bool | getTimeseriesCompatible () const |
Classifier * | createNewInstance () const |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | loadLegacyModelFromFile_v1 (std::fstream &file) |
bool | loadLegacyModelFromFile_v2 (std::fstream &file) |
bool | loadLegacyModelFromFile_v3 (std::fstream &file) |
DecisionTreeNode * | buildTree (ClassificationData &trainingData, DecisionTreeNode *parent, Vector< UINT > features, const Vector< UINT > &classLabels, UINT nodeID) |
Float | getNodeDistance (const VectorFloat &x, const UINT nodeID) |
Float | getNodeDistance (const VectorFloat &x, const VectorFloat &y) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Attributes | |
DecisionTreeNode * | decisionTreeNode |
std::map< UINT, VectorFloat > | nodeClusters |
VectorFloat | classClusterMean |
VectorFloat | classClusterStdDev |
Protected Attributes inherited from Tree | |
UINT | trainingMode |
UINT | numSplittingSteps |
UINT | minNumSamplesPerNode |
UINT | maxDepth |
bool | removeFeaturesAtEachSpilt |
Node * | tree |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Protected Attributes inherited from Classifier | |
std::string | classifierType |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Static Protected Attributes | |
static RegisterClassifierModule< DecisionTree > | registerModule |
Additional Inherited Members | |
Public Types inherited from Tree | |
enum | TrainingMode { BEST_ITERATIVE_SPILT =0, BEST_RANDOM_SPLIT, NUM_TRAINING_MODES } |
Public Types inherited from Classifier | |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Static Public Member Functions inherited from Classifier | |
static Classifier * | createInstanceFromString (std::string const &classifierType) |
static Vector< std::string > | getRegisteredClassifiers () |
Protected Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 47 of file DecisionTree.h.
DecisionTree::DecisionTree | ( | const DecisionTreeNode & | decisionTreeNode = DecisionTreeClusterNode() , |
const UINT | minNumSamplesPerNode = 5 , |
||
const UINT | maxDepth = 10 , |
||
const bool | removeFeaturesAtEachSpilt = false , |
||
const UINT | trainingMode = BEST_ITERATIVE_SPILT , |
||
const UINT | numSplittingSteps = 100 , |
||
const bool | useScaling = false |
||
) |
Default Constructor
decisionTreeNode | sets the type of decision tree node that will be used when training a new decision tree model. Default: DecisionTreeClusterNode |
minNumSamplesPerNode | sets the minimum number of samples that are allowed per node, if the number of samples is below that, the node will become a leafNode. Default value = 5 |
maxDepth | sets the maximum depth of the tree. Default value = 10 |
removeFeaturesAtEachSpilt | sets if a feature is removed at each spilt so it can not be used again. Default value = false |
trainingMode | sets the training mode, this should be one of the TrainingMode enums. Default value = BEST_ITERATIVE_SPILT |
numSplittingSteps | sets the number of steps that will be used to search for the best spliting value for each node. Default value = 100 |
useScaling | sets if the training and real-time data should be scaled between [0 1]. Default value = false |
Definition at line 28 of file DecisionTree.cpp.
DecisionTree::DecisionTree | ( | const DecisionTree & | rhs | ) |
Defines the copy constructor.
rhs | the instance from which all the data will be copied into this instance |
Definition at line 51 of file DecisionTree.cpp.
|
virtual |
Default Destructor
Definition at line 64 of file DecisionTree.cpp.
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Tree.
Definition at line 374 of file DecisionTree.cpp.
DecisionTreeNode * DecisionTree::deepCopyDecisionTreeNode | ( | ) | const |
Gets a pointer to the decision tree node. NULL will be returned if the decision tree node has not been set.
Definition at line 714 of file DecisionTree.cpp.
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an DecisionTree instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another DecisionTree instance |
Reimplemented from Classifier.
Definition at line 104 of file DecisionTree.cpp.
|
virtual |
Deep copies the decision tree, returning a pointer to the new decision tree. The user is in charge of cleaning up the memory so must delete the pointer when they no longer need it. NULL will be returned if the tree could not be copied.
Reimplemented from Tree.
Definition at line 705 of file DecisionTree.cpp.
|
virtual |
This function adds the current model to the formatted stream. This function should be overwritten by the derived class.
file | a reference to the stream the model will be added to |
Reimplemented from Tree.
Definition at line 697 of file DecisionTree.cpp.
const DecisionTreeNode * DecisionTree::getTree | ( | ) | const |
Gets a pointer to the decision tree. NULL will be returned if the decision tree model has not be trained.
Definition at line 723 of file DecisionTree.cpp.
|
protected |
Read the ranges if needed
Definition at line 881 of file DecisionTree.cpp.
|
virtual |
This loads a trained DecisionTree model from a file. This overrides the loadModelFromFile function in the Classifier base class.
file | a reference to the file the DecisionTree model will be loaded from |
Reimplemented from MLBase.
Definition at line 497 of file DecisionTree.cpp.
DecisionTree & DecisionTree::operator= | ( | const DecisionTree & | rhs | ) |
Defines how the data from the rhs DecisionTree should be copied to this DecisionTree
rhs | another instance of a DecisionTree |
Definition at line 74 of file DecisionTree.cpp.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input Vector to classify |
Reimplemented from MLBase.
Definition at line 298 of file DecisionTree.cpp.
|
virtual |
This recomputes the null rejection thresholds for each of the classes in the DecisionTree model. The DecisionTree model needs to be trained first before this function can be called.
Reimplemented from Classifier.
Definition at line 394 of file DecisionTree.cpp.
|
virtual |
This saves the trained DecisionTree model to a file. This overrides the saveModelToFile function in the Classifier base class.
file | a reference to the file the DecisionTree model will be saved to |
Reimplemented from MLBase.
Definition at line 416 of file DecisionTree.cpp.
bool DecisionTree::setDecisionTreeNode | ( | const DecisionTreeNode & | node | ) |
Sets the decision tree node, this will be used as the starting node the next time the DecisionTree model is trained.
Definition at line 727 of file DecisionTree.cpp.
|
virtual |
This trains the DecisionTree model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.
Definition at line 140 of file DecisionTree.cpp.