GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <BAG.h>
Public Member Functions | |
BAG (bool useScaling=false) | |
BAG (const BAG &rhs) | |
virtual | ~BAG (void) |
BAG & | operator= (const BAG &rhs) |
virtual bool | deepCopyFrom (const Classifier *classifier) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
UINT | getEnsembleSize () const |
VectorFloat | getEnsembleWeights () const |
const Vector< Classifier * > | getEnsemble () const |
bool | addClassifierToEnsemble (const Classifier &classifier, Float weight=1) |
bool | clearEnsemble () |
bool | setWeights (const VectorFloat &weights) |
Public Member Functions inherited from Classifier | |
Classifier (void) | |
virtual | ~Classifier (void) |
bool | copyBaseVariables (const Classifier *classifier) |
std::string | getClassifierType () const |
bool | getSupportsNullRejection () const |
bool | getNullRejectionEnabled () const |
Float | getNullRejectionCoeff () const |
Float | getMaximumLikelihood () const |
Float | getBestDistance () const |
Float | getPhase () const |
virtual UINT | getNumClasses () const |
UINT | getClassLabelIndexValue (UINT classLabel) const |
UINT | getPredictedClassLabel () const |
VectorFloat | getClassLikelihoods () const |
VectorFloat | getClassDistances () const |
VectorFloat | getNullRejectionThresholds () const |
Vector< UINT > | getClassLabels () const |
Vector< MinMax > | getRanges () const |
bool | enableNullRejection (bool useNullRejection) |
virtual bool | setNullRejectionCoeff (Float nullRejectionCoeff) |
virtual bool | setNullRejectionThresholds (VectorFloat newRejectionThresholds) |
virtual bool | recomputeNullRejectionThresholds () |
bool | getTimeseriesCompatible () const |
Classifier * | createNewInstance () const |
Classifier * | deepCopy () const |
const Classifier * | getClassifierPointer () const |
const Classifier & | getBaseClassifier () const |
Public Member Functions inherited from MLBase | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | train_ (MatrixFloat &data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
virtual bool | saveModelToFile (std::string filename) const |
virtual bool | loadModelFromFile (std::string filename) |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
Public Member Functions inherited from GRTBase | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
Public Member Functions inherited from Observer< TrainingResult > | |
virtual void | notify (const TrainingResult &data) |
Public Member Functions inherited from Observer< TestInstanceResult > | |
virtual void | notify (const TestInstanceResult &data) |
Protected Member Functions | |
bool | loadLegacyModelFromFile (std::fstream &file) |
Protected Member Functions inherited from Classifier | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from MLBase | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
Protected Member Functions inherited from GRTBase | |
Float | SQR (const Float &x) const |
Protected Attributes | |
VectorFloat | weights |
Vector< Classifier * > | ensemble |
Protected Attributes inherited from Classifier | |
std::string | classifierType |
bool | supportsNullRejection |
bool | useNullRejection |
UINT | numClasses |
UINT | predictedClassLabel |
UINT | classifierMode |
Float | nullRejectionCoeff |
Float | maxLikelihood |
Float | bestDistance |
Float | phase |
VectorFloat | classLikelihoods |
VectorFloat | classDistances |
VectorFloat | nullRejectionThresholds |
Vector< UINT > | classLabels |
Vector< MinMax > | ranges |
Protected Attributes inherited from MLBase | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
Protected Attributes inherited from GRTBase | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterClassifierModule< BAG > | registerModule |
Additional Inherited Members | |
Public Types inherited from Classifier | |
typedef std::map< std::string, Classifier *(*)() > | StringClassifierMap |
Public Types inherited from MLBase | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
Static Public Member Functions inherited from Classifier | |
static Classifier * | createInstanceFromString (std::string const &classifierType) |
static Vector< std::string > | getRegisteredClassifiers () |
Static Public Member Functions inherited from GRTBase | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
Protected Types inherited from Classifier | |
enum | ClassifierModes { STANDARD_CLASSIFIER_MODE =0, TIMESERIES_CLASSIFIER_MODE } |
Static Protected Member Functions inherited from Classifier | |
static StringClassifierMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
BAG::BAG | ( | bool | useScaling = false | ) |
BAG::BAG | ( | const BAG & | rhs | ) |
bool BAG::addClassifierToEnsemble | ( | const Classifier & | classifier, |
Float | weight = 1 |
||
) |
This functions adds a copy of the input classifier to the ensemble. This classifier will then be trained (in addition to the other classifiers in the ensemble) when you call the BAG train function.
classifier | a reference to the classifier you want to add to the ensemble |
|
virtual |
This overrides the clear function in the Classifier base class. It will completely clear the ML module, removing any trained model and setting all the base variables to their default values.
Reimplemented from Classifier.
bool BAG::clearEnsemble | ( | ) |
|
virtual |
This is required for the Gesture Recognition Pipeline for when the pipeline.setClassifier(...) method is called. It clones the data from the Base Class Classifier pointer (which should be pointing to an BAG instance) into this instance
classifier | a pointer to the Classifier Base Class, this should be pointing to another BAG instance |
Reimplemented from Classifier.
const Vector< Classifier * > BAG::getEnsemble | ( | ) | const |
Gets the ensemble.
UINT BAG::getEnsembleSize | ( | ) | const |
VectorFloat BAG::getEnsembleWeights | ( | ) | const |
|
virtual |
This loads a trained BAG model from a file. This overrides the loadModelFromFile function in the Classifier base class.
file | a reference to the file the BAG model will be loaded from |
Reimplemented from MLBase.
|
virtual |
This predicts the class of the inputVector. This overrides the predict function in the Classifier base class.
inputVector | the input Vector to classify |
Reimplemented from MLBase.
|
virtual |
This resets the BAG classifier.
Reimplemented from Classifier.
|
virtual |
This saves the trained BAG model to a file. This overrides the saveModelToFile function in the Classifier base class.
file | a reference to the file the BAG model will be saved to |
Reimplemented from MLBase.
bool BAG::setWeights | ( | const VectorFloat & | weights | ) |
This functions lets you dynamically update the weights for each ensemble. This can be useful if you have some exterior knowledge that could be used to weight the vote for each classifier. The weights should all be positive, however they do not need to sum to one.
You should can call this function both before training the ensemble, and in real-time to update the weights for each prediction.
|
virtual |
This trains the BAG model, using the labelled classification data. This overrides the train function in the Classifier base class.
trainingData | a reference to the training data |
Reimplemented from MLBase.