GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This class implements the bootstrap aggregator classifier. Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of other machine learning algorithms. Bagging also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, the BAG class can be used with any type of GRT classifier. Bagging is a special case of the model averaging. More...
#include "../../CoreModules/Classifier.h"
Go to the source code of this file.
Classes | |
class | BAG |
This class implements the bootstrap aggregator classifier. Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of other machine learning algorithms. Bagging also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, the BAG class can be used with any type of GRT classifier. Bagging is a special case of the model averaging.
Definition in file BAG.h.