![]() |
GestureRecognitionToolkit
Version: 0.2.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
#include <RBMQuantizer.h>
Public Member Functions | |
RBMQuantizer (const UINT numClusters=10) | |
RBMQuantizer (const RBMQuantizer &rhs) | |
virtual | ~RBMQuantizer () |
RBMQuantizer & | operator= (const RBMQuantizer &rhs) |
virtual bool | deepCopyFrom (const FeatureExtraction *featureExtraction) |
virtual bool | computeFeatures (const VectorFloat &inputVector) |
virtual bool | reset () |
virtual bool | clear () |
virtual bool | save (std::fstream &file) const |
virtual bool | load (std::fstream &file) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train_ (ClassificationDataStream &trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train_ (MatrixFloat &trainingData) |
UINT | quantize (const Float inputValue) |
UINT | quantize (const VectorFloat &inputVector) |
bool | getQuantizerTrained () const |
UINT | getNumClusters () const |
UINT | getQuantizedValue () const |
VectorFloat | getQuantizationDistances () const |
BernoulliRBM | getBernoulliRBM () const |
bool | setNumClusters (const UINT numClusters) |
![]() | |
FeatureExtraction () | |
virtual | ~FeatureExtraction () |
bool | copyBaseVariables (const FeatureExtraction *featureExtractionModule) |
virtual bool | computeFeatures (const MatrixFloat &inputMatrix) |
virtual bool | saveModelToFile (std::fstream &file) const |
virtual bool | loadModelFromFile (std::fstream &file) |
std::string | getFeatureExtractionType () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
bool | getFeatureDataReady () const |
const VectorFloat & | getFeatureVector () const |
const MatrixFloat & | getFeatureMatrix () const |
FeatureExtraction * | createNewInstance () const |
![]() | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train (ClassificationDataStream trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train (MatrixFloat data) |
virtual bool | predict (VectorFloat inputVector) |
virtual bool | predict_ (VectorFloat &inputVector) |
virtual bool | predict (MatrixFloat inputMatrix) |
virtual bool | predict_ (MatrixFloat &inputMatrix) |
virtual bool | map (VectorFloat inputVector) |
virtual bool | map_ (VectorFloat &inputVector) |
virtual bool | print () const |
virtual bool | save (const std::string filename) const |
virtual bool | load (const std::string filename) |
GRT_DEPRECATED_MSG ("saveModelToFile(std::string filename) is deprecated, use save(std::string filename) instead", virtual bool saveModelToFile(std::string filename) const ) | |
GRT_DEPRECATED_MSG ("saveModelToFile(std::fstream &file) is deprecated, use save(std::fstream &file) instead", virtual bool saveModelToFile(std::fstream &file) const ) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::string filename) is deprecated, use load(std::string filename) instead", virtual bool loadModelFromFile(std::string filename)) | |
GRT_DEPRECATED_MSG ("loadModelFromFile(std::fstream &file) is deprecated, use load(std::fstream &file) instead", virtual bool loadModelFromFile(std::fstream &file)) | |
virtual bool | getModel (std::ostream &stream) const |
Float | scale (const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false) |
virtual std::string | getModelAsString () const |
DataType | getInputType () const |
DataType | getOutputType () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
Float | getMinChange () const |
Float | getLearningRate () const |
Float | getRootMeanSquaredTrainingError () const |
Float | getTotalSquaredTrainingError () const |
Float | getValidationSetAccuracy () const |
VectorFloat | getValidationSetPrecision () const |
VectorFloat | getValidationSetRecall () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (const bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const Float minChange) |
bool | setLearningRate (const Float learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | setTrainingLoggingEnabled (const bool loggingEnabled) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
Vector< TrainingResult > | getTrainingResults () const |
![]() | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
std::string | getClassType () const |
std::string | getLastWarningMessage () const |
std::string | getLastErrorMessage () const |
std::string | getLastInfoMessage () const |
bool | setInfoLoggingEnabled (const bool loggingEnabled) |
bool | setWarningLoggingEnabled (const bool loggingEnabled) |
bool | setErrorLoggingEnabled (const bool loggingEnabled) |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
![]() | |
virtual void | notify (const TrainingResult &data) |
![]() | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | numClusters |
BernoulliRBM | rbm |
VectorFloat | quantizationDistances |
![]() | |
std::string | featureExtractionType |
bool | initialized |
bool | featureDataReady |
VectorFloat | featureVector |
MatrixFloat | featureMatrix |
![]() | |
bool | trained |
bool | useScaling |
DataType | inputType |
DataType | outputType |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
Float | learningRate |
Float | minChange |
Float | rootMeanSquaredTrainingError |
Float | totalSquaredTrainingError |
Float | validationSetAccuracy |
bool | useValidationSet |
bool | randomiseTrainingOrder |
VectorFloat | validationSetPrecision |
VectorFloat | validationSetRecall |
Random | random |
std::vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
![]() | |
std::string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterFeatureExtractionModule< RBMQuantizer > | registerModule |
Additional Inherited Members | |
![]() | |
typedef std::map< std::string, FeatureExtraction *(*)() > | StringFeatureExtractionMap |
![]() | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
![]() | |
static FeatureExtraction * | createInstanceFromString (const std::string &featureExtractionType) |
![]() | |
static std::string | getGRTVersion (bool returnRevision=true) |
static std::string | getGRTRevison () |
![]() | |
bool | init () |
bool | saveFeatureExtractionSettingsToFile (std::fstream &file) const |
bool | loadFeatureExtractionSettingsFromFile (std::fstream &file) |
![]() | |
bool | saveBaseSettingsToFile (std::fstream &file) const |
bool | loadBaseSettingsFromFile (std::fstream &file) |
![]() | |
Float | SQR (const Float &x) const |
![]() | |
static StringFeatureExtractionMap * | getMap () |
GRT MIT License Copyright (c) <2012> <Nicholas Gillian, Media Lab, MIT>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Definition at line 49 of file RBMQuantizer.h.
RBMQuantizer::RBMQuantizer | ( | const UINT | numClusters = 10 | ) |
Default constructor. Initalizes the RBMQuantizer, setting the number of clusters to use in the quantization model.
numClusters | the number of quantization clusters |
Definition at line 29 of file RBMQuantizer.cpp.
RBMQuantizer::RBMQuantizer | ( | const RBMQuantizer & | rhs | ) |
Copy constructor, copies the RBMQuantizer from the rhs instance to this instance.
rhs | another instance of this class from which the data will be copied to this instance |
Definition at line 39 of file RBMQuantizer.cpp.
|
virtual |
Default Destructor
Definition at line 51 of file RBMQuantizer.cpp.
|
virtual |
Sets the FeatureExtraction clear function, overwriting the base FeatureExtraction function.
Reimplemented from FeatureExtraction.
Definition at line 104 of file RBMQuantizer.cpp.
|
virtual |
Sets the FeatureExtraction computeFeatures function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This is where you should add your main feature extraction code.
inputVector | the inputVector that should be processed. Must have the same dimensionality as the FeatureExtraction module |
Reimplemented from FeatureExtraction.
Definition at line 83 of file RBMQuantizer.cpp.
|
virtual |
Sets the FeatureExtraction deepCopyFrom function, overwriting the base FeatureExtraction function. This function is used to deep copy the values from the input pointer to this instance of the FeatureExtraction module. This function is called by the GestureRecognitionPipeline when the user adds a new FeatureExtraction module to the pipeleine.
featureExtraction | a pointer to another instance of this class, the values of that instance will be cloned to this instance |
Reimplemented from FeatureExtraction.
Definition at line 66 of file RBMQuantizer.cpp.
BernoulliRBM RBMQuantizer::getBernoulliRBM | ( | ) | const |
Gets the RBM model.
Definition at line 304 of file RBMQuantizer.cpp.
UINT RBMQuantizer::getNumClusters | ( | ) | const |
Gets the number of clusters in the quantizer.
Definition at line 292 of file RBMQuantizer.cpp.
VectorFloat RBMQuantizer::getQuantizationDistances | ( | ) | const |
Gets the quantization distances from the most recent quantization.
Definition at line 300 of file RBMQuantizer.cpp.
UINT RBMQuantizer::getQuantizedValue | ( | ) | const |
Gets the most recent quantized value. This can also be accessed by using the first element in the featureVector.
Definition at line 296 of file RBMQuantizer.cpp.
bool RBMQuantizer::getQuantizerTrained | ( | ) | const |
Gets if the quantization model has been trained.
Definition at line 288 of file RBMQuantizer.cpp.
|
virtual |
This loads the feature extraction settings from a file. This overrides the load function in the FeatureExtraction base class.
file | a reference to the file to load the settings from |
Reimplemented from MLBase.
Definition at line 144 of file RBMQuantizer.cpp.
RBMQuantizer & RBMQuantizer::operator= | ( | const RBMQuantizer & | rhs | ) |
Sets the equals operator, copies the data from the rhs instance to this instance.
rhs | another instance of this class from which the data will be copied to this instance |
Definition at line 54 of file RBMQuantizer.cpp.
UINT RBMQuantizer::quantize | ( | const Float | inputValue | ) |
Quantizes the input value using the quantization model. The quantization model must be trained first before you call this function.
inputValue | the value you want to quantize |
Definition at line 249 of file RBMQuantizer.cpp.
UINT RBMQuantizer::quantize | ( | const VectorFloat & | inputVector | ) |
Quantizes the input value using the quantization model. The quantization model must be trained first before you call this function.
inputVector | the vector you want to quantize |
Definition at line 253 of file RBMQuantizer.cpp.
|
virtual |
Sets the FeatureExtraction reset function, overwriting the base FeatureExtraction function. This function is called by the GestureRecognitionPipeline when the pipelines main reset() function is called.
Reimplemented from FeatureExtraction.
Definition at line 91 of file RBMQuantizer.cpp.
|
virtual |
This saves the feature extraction settings to a file. This overrides the save function in the FeatureExtraction base class. You should add your own custom code to this function to define how your feature extraction module is saved to a file.
file | a reference to the file to save the settings to |
Reimplemented from MLBase.
Definition at line 115 of file RBMQuantizer.cpp.
bool RBMQuantizer::setNumClusters | ( | const UINT | numClusters | ) |
Sets the number of clusters in the quantizer. This will clear any previously trained model.
Definition at line 308 of file RBMQuantizer.cpp.
|
virtual |
Trains the quantization model using the training dataset.
trainingData | the training dataset that will be used to train the quantizer |
Reimplemented from MLBase.
Definition at line 196 of file RBMQuantizer.cpp.
|
virtual |
Trains the quantization model using the training dataset.
trainingData | the training dataset that will be used to train the quantizer |
Reimplemented from MLBase.
Definition at line 201 of file RBMQuantizer.cpp.
|
virtual |
Trains the quantization model using the training dataset.
trainingData | the training dataset that will be used to train the quantizer |
Reimplemented from MLBase.
Definition at line 206 of file RBMQuantizer.cpp.
|
virtual |
Trains the quantization model using the training dataset.
trainingData | the training dataset that will be used to train the quantizer |
Reimplemented from MLBase.
Definition at line 211 of file RBMQuantizer.cpp.
|
virtual |
Trains the quantization model using the training dataset.
trainingData | the training dataset that will be used to train the quantizer |
Reimplemented from MLBase.
Definition at line 216 of file RBMQuantizer.cpp.