GestureRecognitionToolkit  Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
PostProcessing Member List

This is the complete list of members for PostProcessing, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
BaseTypes enum name (defined in MLBase)MLBase
CLASSIFIER enum value (defined in MLBase)MLBase
classType (defined in GRTBase)GRTBaseprotected
clear()MLBasevirtual
CLUSTERER enum value (defined in MLBase)MLBase
copyBaseVariables(const PostProcessing *postProcessingModule)PostProcessing
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
createInstanceFromString(std::string const &postProcessingType)PostProcessingstatic
createNewInstance() const PostProcessing
debugLog (defined in GRTBase)GRTBaseprotected
deepCopyFrom(const PostProcessing *postProcessing)PostProcessinginlinevirtual
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
getBaseType() const MLBase
getClassType() const GRTBase
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getInitialized() const PostProcessing
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getIsPostProcessingInputModeClassLikelihoods() const PostProcessing
getIsPostProcessingInputModePredictedClassLabel() const PostProcessing
getIsPostProcessingOutputModeClassLikelihoods() const PostProcessing
getIsPostProcessingOutputModePredictedClassLabel() const PostProcessing
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in PostProcessing)PostProcessinginlineprotectedstatic
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getModelTrained() const MLBase
getNumInputDimensions() const PostProcessing
getNumInputFeatures() const MLBase
getNumOutputDimensions() const PostProcessing
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getPostProcessingInputMode() const PostProcessing
getPostProcessingOutputMode() const PostProcessing
getPostProcessingType() const PostProcessing
getProcessedData() const PostProcessing
getRandomiseTrainingOrder() const MLBase
getRootMeanSquaredTrainingError() const MLBase
getScalingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingResults() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRTBase(void)GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
init()PostProcessingprotected
initialized (defined in PostProcessing)PostProcessingprotected
INPUT_MODE_CLASS_LIKELIHOODS enum value (defined in PostProcessing)PostProcessing
INPUT_MODE_NOT_SET enum value (defined in PostProcessing)PostProcessing
INPUT_MODE_PREDICTED_CLASS_LABEL enum value (defined in PostProcessing)PostProcessing
inputType (defined in MLBase)MLBaseprotected
learningRate (defined in MLBase)MLBaseprotected
load(const std::string filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprotected
loadModelFromFile(std::string filename)PostProcessingvirtual
loadModelFromFile(std::fstream &file)PostProcessinginlinevirtual
loadPostProcessingSettingsFromFile(std::fstream &file)PostProcessingprotected
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(void)MLBase
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
OUTPUT_MODE_CLASS_LIKELIHOODS enum value (defined in PostProcessing)PostProcessing
OUTPUT_MODE_NOT_SET enum value (defined in PostProcessing)PostProcessing
OUTPUT_MODE_PREDICTED_CLASS_LABEL enum value (defined in PostProcessing)PostProcessing
outputType (defined in MLBase)MLBaseprotected
PostProcessing(void)PostProcessing
postProcessingInputMode (defined in PostProcessing)PostProcessingprotected
PostprocessingInputModes enum name (defined in PostProcessing)PostProcessing
postProcessingOutputMode (defined in PostProcessing)PostProcessingprotected
PostprocessingOutputModes enum name (defined in PostProcessing)PostProcessing
postProcessingType (defined in PostProcessing)PostProcessingprotected
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)MLBasevirtual
predict_(MatrixFloat &inputMatrix)MLBasevirtual
print() const MLBasevirtual
process(const VectorFloat &inputVector)PostProcessinginlinevirtual
processedData (defined in PostProcessing)PostProcessingprotected
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()PostProcessinginlinevirtual
rootMeanSquaredTrainingError (defined in MLBase)MLBaseprotected
save(const std::string filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprotected
saveModelToFile(std::string filename) const PostProcessingvirtual
saveModelToFile(std::fstream &file) const PostProcessinginlinevirtual
savePostProcessingSettingsToFile(std::fstream &file) const PostProcessingprotected
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)MLBaseinline
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinlineprotected
StringPostProcessingMap typedefPostProcessing
testingLog (defined in GRTBase)GRTBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(ClassificationData &trainingData)MLBasevirtual
train_(RegressionData &trainingData)MLBasevirtual
train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
train_(ClassificationDataStream &trainingData)MLBasevirtual
train_(UnlabelledData &trainingData)MLBasevirtual
train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in GRTBase)GRTBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~PostProcessing(void)PostProcessingvirtual