GestureRecognitionToolkit  Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
LogisticRegression Member List

This is the complete list of members for LogisticRegression, including all inherited members.

BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
BaseTypes enum name (defined in MLBase)MLBase
CLASSIFIER enum value (defined in MLBase)MLBase
classType (defined in GRTBase)GRTBaseprotected
clear()Regressifiervirtual
CLUSTERER enum value (defined in MLBase)MLBase
copyBaseVariables(const Regressifier *regressifier)Regressifier
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
createInstanceFromString(const std::string &regressifierType)Regressifierstatic
createNewInstance() const Regressifier
debugLog (defined in GRTBase)GRTBaseprotected
deepCopy() const Regressifier
deepCopyFrom(const Regressifier *regressifier)LogisticRegressionvirtual
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
getBaseRegressifier() const Regressifier
getBaseType() const MLBase
getClassType() const GRTBase
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getInputRanges() const Regressifier
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMap() (defined in Regressifier)Regressifierinlineprotectedstatic
getMaxNumEpochs() const MLBase
getMaxNumIterations() const LogisticRegression
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getModelTrained() const MLBase
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputRanges() const Regressifier
getOutputType() const MLBase
getRandomiseTrainingOrder() const MLBase
getRegisteredRegressifiers()Regressifierstatic
getRegressifierType() const Regressifier
getRegressionData() const Regressifier
getRootMeanSquaredTrainingError() const MLBase
getScalingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingResults() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRTBase(void)GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
inputType (defined in MLBase)MLBaseprotected
inputVectorRanges (defined in Regressifier)Regressifierprotected
learningRate (defined in MLBase)MLBaseprotected
load(const std::string filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)Regressifierprotected
loadLegacyModelFromFile(std::fstream &file)LogisticRegressionprotected
loadModelFromFile(std::fstream &file)LogisticRegressionvirtual
Regressifier::loadModelFromFile(std::string filename)MLBasevirtual
LogisticRegression(const bool useScaling=true)LogisticRegression
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(void)MLBase
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
operator=(const LogisticRegression &rhs)LogisticRegression
outputType (defined in MLBase)MLBaseprotected
predict(VectorFloat inputVector)MLBasevirtual
predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)LogisticRegressionvirtual
Regressifier::predict_(MatrixFloat &inputMatrix)MLBasevirtual
print() const MLBasevirtual
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
registerModule (defined in LogisticRegression)LogisticRegressionprotectedstatic
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
Regressifier(void)Regressifier
regressifierType (defined in Regressifier)Regressifierprotected
regressionData (defined in Regressifier)Regressifierprotected
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()Regressifiervirtual
rootMeanSquaredTrainingError (defined in MLBase)MLBaseprotected
save(const std::string filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const Regressifierprotected
saveModelToFile(std::fstream &file) const LogisticRegressionvirtual
Regressifier::saveModelToFile(std::string filename) const MLBasevirtual
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)MLBaseinline
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMaxNumIterations(UINT maxNumIterations)LogisticRegression
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
sigmoid(const Float x) const (defined in LogisticRegression)LogisticRegressioninlineprotected
SQR(const Float &x) const (defined in GRTBase)GRTBaseinlineprotected
StringRegressifierMap typedefRegressifier
targetVectorRanges (defined in Regressifier)Regressifierprotected
testingLog (defined in GRTBase)GRTBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(ClassificationData trainingData)MLBasevirtual
train(RegressionData trainingData)MLBasevirtual
train(TimeSeriesClassificationData trainingData)MLBasevirtual
train(ClassificationDataStream trainingData)MLBasevirtual
train(UnlabelledData trainingData)MLBasevirtual
train(MatrixFloat data)MLBasevirtual
train_(RegressionData &trainingData)LogisticRegressionvirtual
Regressifier::train_(ClassificationData &trainingData)MLBasevirtual
Regressifier::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
Regressifier::train_(ClassificationDataStream &trainingData)MLBasevirtual
Regressifier::train_(UnlabelledData &trainingData)MLBasevirtual
Regressifier::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingLog (defined in GRTBase)GRTBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
wLogisticRegressionprotected
w0LogisticRegressionprotected
warningLog (defined in GRTBase)GRTBaseprotected
~GRTBase(void)GRTBasevirtual
~LogisticRegression(void)LogisticRegressionvirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
~Regressifier(void)Regressifiervirtual