GestureRecognitionToolkit  Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
DiscreteHiddenMarkovModel Member List

This is the complete list of members for DiscreteHiddenMarkovModel, including all inherited members.

a (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
b (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
BASE_TYPE_NOT_SET enum value (defined in MLBase)MLBase
baseType (defined in MLBase)MLBaseprotected
BaseTypes enum name (defined in MLBase)MLBase
CLASSIFIER enum value (defined in MLBase)MLBase
classType (defined in GRTBase)GRTBaseprotected
clear()MLBasevirtual
CLUSTERER enum value (defined in MLBase)MLBase
copyGRTBaseVariables(const GRTBase *GRTBase)GRTBase
copyMLBaseVariables(const MLBase *mlBase)MLBase
cThreshold (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
debugLog (defined in GRTBase)GRTBaseprotected
delta (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
DiscreteHiddenMarkovModel() (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
DiscreteHiddenMarkovModel(const UINT numStates, const UINT numSymbols, const UINT modelType, const UINT delta) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
DiscreteHiddenMarkovModel(const MatrixFloat &a, const MatrixFloat &b, const VectorFloat &pi, const UINT modelType, const UINT delta) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
DiscreteHiddenMarkovModel(const DiscreteHiddenMarkovModel &rhs) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
enableScaling(const bool useScaling)MLBase
errorLog (defined in GRTBase)GRTBaseprotected
estimatedStates (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
forwardBackward(HMMTrainingObject &trainingObject, const Vector< UINT > &obs) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
getBaseType() const MLBase
getClassType() const GRTBase
getGRTBasePointer()GRTBase
getGRTBasePointer() const GRTBase
getGRTRevison()GRTBasestatic
getGRTVersion(bool returnRevision=true)GRTBasestatic
getInputType() const MLBase
getIsBaseTypeClassifier() const MLBase
getIsBaseTypeClusterer() const MLBase
getIsBaseTypeRegressifier() const MLBase
getLastErrorMessage() const GRTBase
getLastInfoMessage() const GRTBase
getLastWarningMessage() const GRTBase
getLearningRate() const MLBase
getMaxNumEpochs() const MLBase
getMinChange() const MLBase
getMinNumEpochs() const MLBase
getMLBasePointer()MLBase
getMLBasePointer() const MLBase
getModel(std::ostream &stream) const MLBasevirtual
getModelAsString() const MLBasevirtual
getModelTrained() const MLBase
getNumInputDimensions() const MLBase
getNumInputFeatures() const MLBase
getNumOutputDimensions() const MLBase
getNumTrainingIterationsToConverge() const MLBase
getOutputType() const MLBase
getRandomiseTrainingOrder() const MLBase
getRootMeanSquaredTrainingError() const MLBase
getScalingEnabled() const MLBase
getTotalSquaredTrainingError() const MLBase
getTrained() const MLBase
getTrainingIterationLog() const (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
getTrainingResults() const MLBase
getUseValidationSet() const MLBase
getValidationSetAccuracy() const MLBase
getValidationSetPrecision() const MLBase
getValidationSetRecall() const MLBase
getValidationSetSize() const MLBase
GRTBase(void)GRTBase
infoLog (defined in GRTBase)GRTBaseprotected
inputType (defined in MLBase)MLBaseprotected
learningRate (defined in MLBase)MLBaseprotected
load(const std::string filename)MLBasevirtual
loadBaseSettingsFromFile(std::fstream &file)MLBaseprotected
loadModelFromFile(std::fstream &file)DiscreteHiddenMarkovModelvirtual
MLBase::loadModelFromFile(std::string filename)MLBasevirtual
logLikelihood (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
map(VectorFloat inputVector)MLBasevirtual
map_(VectorFloat &inputVector)MLBasevirtual
maxNumEpochs (defined in MLBase)MLBaseprotected
minChange (defined in MLBase)MLBaseprotected
minNumEpochs (defined in MLBase)MLBaseprotected
MLBase(void)MLBase
modelType (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
notify(const TrainingResult &data) (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
notify(const TestInstanceResult &data) (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual
notifyTestResultsObservers(const TestInstanceResult &data)MLBase
notifyTrainingResultsObservers(const TrainingResult &data)MLBase
numInputDimensions (defined in MLBase)MLBaseprotected
numOutputDimensions (defined in MLBase)MLBaseprotected
numRandomTrainingIterations (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
numStates (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
numSymbols (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
numTrainingIterationsToConverge (defined in MLBase)MLBaseprotected
observationSequence (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inline
Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inline
outputType (defined in MLBase)MLBaseprotected
pi (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
predict(const UINT newSample) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
predict(const Vector< UINT > &obs) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
MLBase::predict(VectorFloat inputVector)MLBasevirtual
MLBase::predict(MatrixFloat inputMatrix)MLBasevirtual
predict_(VectorFloat &inputVector)MLBasevirtual
predict_(MatrixFloat &inputMatrix)MLBasevirtual
predictLogLikelihood(const Vector< UINT > &obs) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
print() const DiscreteHiddenMarkovModelvirtual
random (defined in MLBase)MLBaseprotected
randomiseTrainingOrder (defined in MLBase)MLBaseprotected
randomizeMatrices(const UINT numStates, const UINT numSymbols) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
registerTestResultsObserver(Observer< TestInstanceResult > &observer)MLBase
registerTrainingResultsObserver(Observer< TrainingResult > &observer)MLBase
REGRESSIFIER enum value (defined in MLBase)MLBase
removeAllTestObservers()MLBase
removeAllTrainingObservers()MLBase
removeTestResultsObserver(const Observer< TestInstanceResult > &observer)MLBase
removeTrainingResultsObserver(const Observer< TrainingResult > &observer)MLBase
reset()DiscreteHiddenMarkovModelvirtual
resetModel(const UINT numStates, const UINT numSymbols, const UINT modelType, const UINT delta) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
rootMeanSquaredTrainingError (defined in MLBase)MLBaseprotected
save(const std::string filename) const MLBasevirtual
saveBaseSettingsToFile(std::fstream &file) const MLBaseprotected
saveModelToFile(std::fstream &file) const DiscreteHiddenMarkovModelvirtual
MLBase::saveModelToFile(std::string filename) const MLBasevirtual
scale(const Float &x, const Float &minSource, const Float &maxSource, const Float &minTarget, const Float &maxTarget, const bool constrain=false)MLBaseinline
setErrorLoggingEnabled(const bool loggingEnabled)GRTBase
setInfoLoggingEnabled(const bool loggingEnabled)GRTBase
setLearningRate(const Float learningRate)MLBase
setMaxNumEpochs(const UINT maxNumEpochs)MLBase
setMinChange(const Float minChange)MLBase
setMinNumEpochs(const UINT minNumEpochs)MLBase
setRandomiseTrainingOrder(const bool randomiseTrainingOrder)MLBase
setTrainingLoggingEnabled(const bool loggingEnabled)MLBase
setUseValidationSet(const bool useValidationSet)MLBase
setValidationSetSize(const UINT validationSetSize)MLBase
setWarningLoggingEnabled(const bool loggingEnabled)GRTBase
SQR(const Float &x) const (defined in GRTBase)GRTBaseinlineprotected
testingLog (defined in GRTBase)GRTBaseprotected
testResultsObserverManager (defined in MLBase)MLBaseprotected
totalSquaredTrainingError (defined in MLBase)MLBaseprotected
train(const Vector< Vector< UINT > > &trainingData) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
MLBase::train(ClassificationData trainingData)MLBasevirtual
MLBase::train(RegressionData trainingData)MLBasevirtual
MLBase::train(TimeSeriesClassificationData trainingData)MLBasevirtual
MLBase::train(ClassificationDataStream trainingData)MLBasevirtual
MLBase::train(UnlabelledData trainingData)MLBasevirtual
MLBase::train(MatrixFloat data)MLBasevirtual
train_(const Vector< Vector< UINT > > &obs, const UINT maxIter, UINT &currentIter, Float &newLoglikelihood) (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
MLBase::train_(ClassificationData &trainingData)MLBasevirtual
MLBase::train_(RegressionData &trainingData)MLBasevirtual
MLBase::train_(TimeSeriesClassificationData &trainingData)MLBasevirtual
MLBase::train_(ClassificationDataStream &trainingData)MLBasevirtual
MLBase::train_(UnlabelledData &trainingData)MLBasevirtual
MLBase::train_(MatrixFloat &data)MLBasevirtual
trained (defined in MLBase)MLBaseprotected
trainingIterationLog (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModel
trainingLog (defined in GRTBase)GRTBaseprotected
trainingResults (defined in MLBase)MLBaseprotected
trainingResultsObserverManager (defined in MLBase)MLBaseprotected
useScaling (defined in MLBase)MLBaseprotected
useValidationSet (defined in MLBase)MLBaseprotected
validationSetAccuracy (defined in MLBase)MLBaseprotected
validationSetPrecision (defined in MLBase)MLBaseprotected
validationSetRecall (defined in MLBase)MLBaseprotected
validationSetSize (defined in MLBase)MLBaseprotected
warningLog (defined in GRTBase)GRTBaseprotected
~DiscreteHiddenMarkovModel() (defined in DiscreteHiddenMarkovModel)DiscreteHiddenMarkovModelvirtual
~GRTBase(void)GRTBasevirtual
~MLBase(void)MLBasevirtual
~Observer() (defined in Observer< TrainingResult >)Observer< TrainingResult >inlinevirtual
~Observer() (defined in Observer< TestInstanceResult >)Observer< TestInstanceResult >inlinevirtual