GestureRecognitionToolkit
Version: 0.1.0
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
This is the complete list of members for DecisionTreeThresholdNode, including all inherited members.
classProbabilities (defined in DecisionTreeNode) | DecisionTreeNode | protected |
classType (defined in GRTBase) | GRTBase | protected |
clear() | DecisionTreeThresholdNode | virtual |
computeBestSpilt(const UINT &trainingMode, const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) | DecisionTreeNode | virtual |
computeBestSpiltBestIterativeSpilt(const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) (defined in DecisionTreeThresholdNode) | DecisionTreeThresholdNode | protectedvirtual |
computeBestSpiltBestRandomSpilt(const UINT &numSplittingSteps, const ClassificationData &trainingData, const Vector< UINT > &features, const Vector< UINT > &classLabels, UINT &featureIndex, Float &minError) (defined in DecisionTreeThresholdNode) | DecisionTreeThresholdNode | protectedvirtual |
computeFeatureWeights(VectorFloat &weights) const | Node | virtual |
computeLeafNodeWeights(MatrixFloat &weights) const | Node | virtual |
copyGRTBaseVariables(const GRTBase *GRTBase) | GRTBase | |
createInstanceFromString(std::string const &nodeType) | Node | static |
createNewInstance() const | Node | |
debugLog (defined in GRTBase) | GRTBase | protected |
DecisionTreeNode() | DecisionTreeNode | |
DecisionTreeThresholdNode() | DecisionTreeThresholdNode | |
deepCopy() const | DecisionTreeThresholdNode | |
deepCopyNode() const | DecisionTreeThresholdNode | virtual |
depth (defined in Node) | Node | protected |
errorLog (defined in GRTBase) | GRTBase | protected |
featureIndex (defined in DecisionTreeThresholdNode) | DecisionTreeThresholdNode | protected |
getClassLabelIndexValue(UINT classLabel, const Vector< UINT > &classLabels) (defined in DecisionTreeNode) | DecisionTreeNode | static |
getClassProbabilities() const | DecisionTreeNode | |
getClassType() const | GRTBase | |
getDepth() const | Node | |
getFeatureIndex() const | DecisionTreeThresholdNode | |
getGRTBasePointer() | GRTBase | |
getGRTBasePointer() const | GRTBase | |
getGRTRevison() | GRTBase | static |
getGRTVersion(bool returnRevision=true) | GRTBase | static |
getHasLeftChild() const | Node | |
getHasParent() const | Node | |
getHasRightChild() const | Node | |
getIsLeafNode() const | Node | |
getLastErrorMessage() const | GRTBase | |
getLastInfoMessage() const | GRTBase | |
getLastWarningMessage() const | GRTBase | |
getLeftChild() const (defined in Node) | Node | inline |
getMap() (defined in Node) | Node | inlineprotectedstatic |
getMaxDepth() const (defined in Node) | Node | |
getModel(std::ostream &stream) const | DecisionTreeThresholdNode | virtual |
getNodeID() const | Node | |
getNodeSize() const | DecisionTreeNode | |
getNodeType() const | Node | |
getNumClasses() const | DecisionTreeNode | |
getParent() const (defined in Node) | Node | inline |
getPredictedNodeID() const | Node | |
getRightChild() const (defined in Node) | Node | inline |
getThreshold() const | DecisionTreeThresholdNode | |
GRTBase(void) | GRTBase | |
infoLog (defined in GRTBase) | GRTBase | protected |
initNode(Node *parent, const UINT depth, const UINT nodeID, const bool isLeafNode=false) (defined in Node) | Node | |
isLeafNode (defined in Node) | Node | protected |
leftChild (defined in Node) | Node | protected |
loadFromFile(std::fstream &file) | Node | virtual |
loadParametersFromFile(std::fstream &file) | DecisionTreeThresholdNode | protectedvirtual |
Node() | Node | |
nodeID (defined in Node) | Node | protected |
nodeSize (defined in DecisionTreeNode) | DecisionTreeNode | protected |
nodeType (defined in Node) | Node | protected |
parent (defined in Node) | Node | protected |
predict(const VectorFloat &x) | DecisionTreeThresholdNode | virtual |
DecisionTreeNode::predict(const VectorFloat &x, VectorFloat &classLikelihoods) | DecisionTreeNode | virtual |
predictedNodeID (defined in Node) | Node | protected |
print() const | DecisionTreeThresholdNode | virtual |
registerModule (defined in DecisionTreeThresholdNode) | DecisionTreeThresholdNode | protectedstatic |
rightChild (defined in Node) | Node | protected |
saveParametersToFile(std::fstream &file) const | DecisionTreeThresholdNode | protectedvirtual |
saveToFile(std::fstream &file) const | Node | virtual |
set(const UINT nodeSize, const UINT featureIndex, const Float threshold, const VectorFloat &classProbabilities) | DecisionTreeThresholdNode | |
setClassProbabilities(const VectorFloat &classProbabilities) | DecisionTreeNode | |
setDepth(const UINT depth) (defined in Node) | Node | |
setErrorLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setInfoLoggingEnabled(const bool loggingEnabled) | GRTBase | |
setIsLeafNode(const bool isLeafNode) (defined in Node) | Node | |
setLeafNode(const UINT nodeSize, const VectorFloat &classProbabilities) | DecisionTreeNode | |
setLeftChild(Node *leftChild) (defined in Node) | Node | |
setNodeID(const UINT nodeID) (defined in Node) | Node | |
setNodeSize(const UINT nodeSize) | DecisionTreeNode | |
setParent(Node *parent) (defined in Node) | Node | |
setRightChild(Node *rightChild) (defined in Node) | Node | |
setWarningLoggingEnabled(const bool loggingEnabled) | GRTBase | |
SQR(const Float &x) const (defined in GRTBase) | GRTBase | inlineprotected |
StringNodeMap typedef | Node | |
testingLog (defined in GRTBase) | GRTBase | protected |
threshold (defined in DecisionTreeThresholdNode) | DecisionTreeThresholdNode | protected |
trainingLog (defined in GRTBase) | GRTBase | protected |
warningLog (defined in GRTBase) | GRTBase | protected |
~DecisionTreeNode() | DecisionTreeNode | virtual |
~DecisionTreeThresholdNode() | DecisionTreeThresholdNode | virtual |
~GRTBase(void) | GRTBase | virtual |
~Node() | Node | virtual |