37 #ifndef GRT_GMM_HEADER
38 #define GRT_GMM_HEADER
40 #include "../../CoreModules/Classifier.h"
41 #include "../../ClusteringModules/GaussianMixtureModels/GaussianMixtureModels.h"
44 #define GMM_MIN_SCALE_VALUE 0.0001
45 #define GMM_MAX_SCALE_VALUE 1.0
55 GMM(UINT numMixtureModels = 2,
bool useScaling=
false,
bool useNullRejection=
false,Float nullRejectionCoeff=1.0,UINT maxIter=100,Float minChange=1.0e-5);
111 virtual bool clear();
187 Float computeMixtureLikelihood(
const VectorFloat &x,UINT k);
190 UINT numMixtureModels;
205 #endif //GRT_GMM_HEADER
virtual bool predict(VectorFloat inputVector)
virtual bool train_(ClassificationData &trainingData)
virtual bool loadModelFromFile(std::fstream &file)
virtual bool recomputeNullRejectionThresholds()
virtual bool train(ClassificationData trainingData)
Vector< MixtureModel > getModels()
bool setNumMixtureModels(UINT K)
This class implements a MixtureModel, which is a container for holding a class model for the GRT::GMM...
virtual bool saveModelToFile(std::fstream &file) const
virtual bool predict_(VectorFloat &inputVector)
GMM(UINT numMixtureModels=2, bool useScaling=false, bool useNullRejection=false, Float nullRejectionCoeff=1.0, UINT maxIter=100, Float minChange=1.0e-5)
virtual bool saveModelToFile(std::string filename) const
UINT getNumMixtureModels()
virtual bool loadModelFromFile(std::string filename)
GMM & operator=(const GMM &rhs)
bool loadLegacyModelFromFile(std::fstream &file)
virtual bool deepCopyFrom(const Classifier *classifier)
bool setMinChange(Float minChange)
bool setMaxIter(UINT maxIter)